AUENREPORT SPEZIAL

Die Deichrückverlegung bei Lenzen

ERSTE ERGEBNISSE DER WISSENSCHAFTLICHEN BEGLEITUNG

Inhaltsverzeichnis

Worte zum Geleit Horst Möhring	4
Vorwort Heike Garbe	5
Deichrückverlegung in der Lenzener Elbtalaue – Von der ersten Idee bis zur Umsetzung <i>Christian Damm</i>	6
Wasserstandsmessungen zur Untersuchung des Wirkungszusammenhangs zwischen Abflussdynamik und Grundwasser in Flussauen Hector Montenegro	12
Hydraulische Wirkung der Deichrückverlegung Lenzen an der Elbe – Zusammenschau von Modellierungen und Naturmessungen Petra Faulhaber, Matthias Alexy	17
Boden- und Sedimentqualitäten aus der Rückdeichungsfläche Lenzen Frank Krüger	24
Amphibien in Flussauen – Einfluss der Renaturierung der Lenzener Elbtalaue auf die Diversität von Amphibien und die Entwicklung von Amphibienpopulationen Julian Glos, Jana Behnke, Jannis Feigs, Greta Grunwald, Daniela Kühne, Anne Rottenau, Sylvia Ryz	31
Neuanlage von Auwäldern in der Lenzener Elbtalaue – Evaluation des Anwuchses vor dem ersten Hochwasserereignis Jochen Purps	37
Erfolgskontrolle ausgewählter Initialpflanzungen in der Lenzener Elbtalaue Christian Timpe, Birgit Felinks	44
Artenzusammensetzung von Getreibsel und der Bodendiasporenbank im Gebiet der Deichrückverlegung Lenzener Elbtalaue – Erste Ergebnisse Katharina Nabel	50
Vegetationsentwicklung im Rückdeichungsgebiet Lenzen: Veränderungen zwischen 2009 und 2011 Kai Jensen, Nikola Lenzewski, Jürgen Dengler	58
Zur Entwicklung der Vogelgemeinschaften im Bereich der Deichrückverlegung Lenzen Thomas Heinicke	65

Die Bedeutung der Flutmulden der Lenzener Elbtalaue für die Flussfischgemeinschaft Wolf-Christian Lewin, Erik Fladung	73
Entwicklung der Auenvegetation nach einer Deichrückverlegung – Ein Ausblick Eva Mosner, Peter Horchler	79
Betrachtung von Auenfunktionen vor und nach der Deichrückverlegung bei Lenzen Mathias Scholz, Hans Dieter Kasperidus, Christiane Schulz-Zunkel, Dietmar Mehl	85
Autorenverzeichnis	92
Impressum	96

Worte zum Geleit

Wer, wie ich, in der Aue an der Elbe auf einem Bauernhof geboren und aufgewachsen ist, weiß, dass dieser Fluss an jedem Tag des Jahres, aber auch in den Jahreszeiten, das Leben seiner Anwohner mitbestimmt.

Morgens, wenn man aus dem Haus geht und ihn riecht, weiß man, ob es in den nächsten drei Tagen regnet, wenn die Möwen da sind, kommt Sturm – immer ist der Fluss da. Der wechselnde Wasserstand der Elbe bestimmt Wachstum und Ernte der Kulturen.

Hochwässer lassen Ängste wachsen, denn zwei Deichbrüche in der Region nach 1945 blieben nachhaltig in Erinnerung – oft gingen Teile der Ernte verloren.

Das Grünland der Aue ist ein Besonderes: Jedes Jahr wartet man zweimal auf's Neue auf den ziehenden Kranich, die ziehenden Gänse und die vielen anderen, hier rastenden Durchzügler. Gleichermaßen ist diese, unsere Aue reich beschenkt von den Gaben der Natur und ist damit wie kaum eine andere Landschaft dafür geschaffen, über den Sinn des Tuns in Landwirtschaft und Naturschutz nachzudenken – aber auch, über das Wechselspiel zwischen Naturschutz und Landwirtschaft, Tourismus, Umweltschutz, Regionalentwicklung und Arbeit. Letztlich muss dass, was wir wollen, den Menschen dienen.

So entstand unter anderem die Entwicklung der Grundgedanken zur Rückdeichung und der vorbereitenden und begleitenden Forschung, unter Verantwortung des Biosphärenreservates Flusslandschaft Elbe-Brandenburg und später des Trägerverbundes Burg Lenzen. Eine zweite Richtung der Forschung lief in der Landwirtschaft zur Landschaftspflege mit Tieren und der nachhaltigen Landnutzung.

Vielfältig und vielschichtig war die Arbeit in Forschung, Verwaltung und Praxis. Lassen Sie mich stellvertretend für viele Menschen der Region "Danke" sagen. Den Wert der gemeinsam verlebten Zeit haben sie alle mit ihren Arbeiten bestimmt. Ein besonderer Dank gilt Frau Prof. Dr. H.-D. Matthes und Herrn Dr. Frank Neuschulz (†), die uns alle sehr geprägt haben.

Möge der Auenreport wieder gut und dienlich sein – möge es aber auch gelingen, zukünftig mehr Forschung in das Rückdeichungsgebiet zu bekommen. Wissen wir doch aus der Erfahrung, dass mit jeder Antwort viele Fragen neu entstehen oder unbeantwortet bleiben.

Es gilt immer noch das Goethe-Wort im doppelten Sinne zu erfüllen – "Wir leben fort in unseren Kindern" – gleichwohl aber ist auch die Nachhaltigkeit allen Strebens unter das Motto zu stellen: "Was Du ererbst von Deinen Vätern, erwirb es, um es zu besitzen."

Leben heißt Gegenwart und Zukunft – Vergangenes ist der Wert der Zeit – es heißt aber auch, unser Tun rückblickend zu hinterfragen.

Neben dem nochmaligen Dank an alle Weggefährten und Autoren wünsche ich den Lesern Freude und Zugewinn.

Horst Möhring

Vorwort

Flussauen in Mitteleuropa sind in ihrer vom Menschen unbeeinflussten Ausprägung hochdynamische Ökosysteme mit einer ausgesprochen großen Vielfalt an verschiedenen Lebensräumen und dazugehörigen Tier- und Pflanzenarten. Aufgrund dieser Biotop- und Artenausstattung gehören naturnahe Flussauen zu den Hotspots der Biodiversität in Mitteleuropa.

Durch die zunehmende anthropogene Überformung eines Großteils der mitteleuropäischen Flussauen, unter anderem durch Eindeichungen, Begradigungen und weitere wasserbauliche Maßnahmen sowie Nutzungsintensivierung wurde die Dynamik dieser Ökosysteme stark eingeschränkt. Dies ging einher mit einem erheblichen Verlust der natürlichen und naturnahen Auenhabitate und der damit verbundenen Vielfalt an Tier- und Pflanzenarten, wobei Auwaldund Feuchtlebensräume in besonderem Maße betroffen sind.

Um diesem Verlust an Biotopen und Arten entgegenzuwirken, sind Auen-Renaturierungsprojekte erforderlich, die insbesondere auf das Zulassen einer möglichst unbeeinflussten Eigendynamik und auf eine Wiederherstellung der besonders gefährdeten Auen-Lebensräume abzielen. Ein derartiges Projekt konnte mit der Deichrückverlegung bei Lenzen im Biosphärenreservat Flusslandschaft Elbe-Brandenburg in enger und konstruktiver Zusammenarbeit mit den zuständigen Referaten für Hochwasserschutz und Naturschutz des Landesumweltamtes Brandenburg, dem Landkreis Prignitz und dem Trägerverbund Burg Lenzen e.V. realisiert werden.

Das Projekt ist zum gegenwärtigen Zeitpunkt die größte, fertig gestellte Deichrückverlegung in Deutschland und daher als Referenzobjekt von besonderem wissenschaftlichen Interesse. Deshalb fanden bislang drei Workshops statt, auf denen erste Ergebnisse der Begleituntersuchungen vorgestellt und diskutiert wurden. Im vorliegenden *Auenreport spezial* werden die Ergebnisse des dritten Workshops im November 2011 zusammengefasst. Den beteiligten Autoren danken wir für die Aufbereitung der Forschungsergebnisse und Birgit Felinks für die Bereitschaft im Redaktionsteam mitzuarbeiten.

Dass wir heute so weit sind, ist vielen Menschen zu verdanken, die über Jahre und Jahrzehnte diese Vision unterstützt, vertreten und weiterverbreitet haben. Ihnen allen gebührt unser besonderer Dank.

Stellvertretend für Viele möchten wir an dieser Stelle aber einigen Personen ausdrücklich Dank sagen: dem Ideenentwickler und unermüdlichen, manchmal unbequemen Antreiber Dr. Frank Neuschulz (†) sowie dem langjährigen, wohlwollend kritischen Begleiter und Visionär Horst Möhring.

Außerdem danken wir ganz herzlich den Projektleitern und -koordinatoren der drei Großprojekte Stefan Lilje, Jochen Purps und Martina Hape, Dr. Christian Damm und Eckart Krüger für ihr langjähriges und beharrliches Engagement.

Für die Zukunft wünschen wir uns, dass die Entwicklungen in der Deichrückverlegung auch weiterhin von Hochschulen und wissenschaftlichen Einrichtungen so engagiert wie bisher begleitet werden.

Heike Garbe für das Team des Biosphärenreservates

Deichrückverlegung in der Lenzener Elbtalaue – Von der ersten Idee bis zur Umsetzung

Christian Damm, Karlsruher Institut für Technologie – WWF-Auen-Institut

1 Projektgeschichte

Die Deichrückverlegung zwischen Lenzen und Wustrow hat eine lange Geschichte, deren Beginn im weitesten Sinne im Jahr 1898 anzusetzen ist: schon damals wies die Königliche Elbstrombauverwaltung auf die "Deichengen" zwischen der ehemaligen Lenzer Fähre (El-km 479,5) und dem Gartower Elbholz (El-km 483,5) hin (ELBSTROMWERK 1898). Die Motivation war demzufolge, anders als heute, ausschließlich wasserwirtschaftlich begründet. Allerdings wurde auch damals darauf hingewiesen, dass Entwürfe für Deichrückverlegungen aufgrund der mangelnden Unterstützung durch die Deichverbände wahrscheinlich nicht realisierbar seien. Die Überlegungen zu einer Deichrückverlegung bei Lenzen wurden dann in den 1960er-Jahren in der Forschungsanstalt für Schifffahrt, Wasser- und Grundbau (FAS) in Potsdam-Marquardt aufgegriffen. Die erhaltenen Skizzen zeigen eine Rückverlegung des Deiches am Bösen Ort um ca. 200 - 250 m und eine damit einhergehende Erweiterung des Retentionsraumes um ca. 70 ha. Auch diese Entwürfe sind, vermutlich wieder aus finanziellen Erwägungen, nicht umgesetzt worden.

Erst die nach dem Fall der Mauer stattfindenden gesellschaftlichen und politischen Veränderungen öffneten wieder ein Zeitfenster, in dem maßgebliche Grundlagen für die Weiterentwicklung der Projektidee entstanden sind. Neue Wege mussten beschritten und neue Chancen konnten genutzt werden. Dazu gehörte auch, dass der landwirtschaftliche Großbetrieb in Lenzen in dieser Zeit Vertreter aus Naturschutz und Landwirtschaft zusammenführte, um die Möglichkeiten einer ökologisch ausgerichteten Regionalentwicklung, welche gerade für die brandenburgische Elbtalaue als neue Perspektive gesehen wurde, zu diskutieren. Workshops mit Experten aus Wissenschaft, Verwaltung, Landes- und Bundesbehörden folgten, bei denen auch konkrete Ideen zur Entwicklung der Elbe-Flusslandschaft entstanden. Auwaldwiederherstellung und Deichrückverlegung wurden schon damals als mögliche Inhalte genannt. Der gerade entstandene Naturpark "Mecklenburgische Elbtalaue" (ehemals in Mecklenburg liegend, heute: Biosphärenreservat Flusslandschaft Elbe-Brandenburg) griff diese Ideen auf. Sein damaliger Leiter Dr. Frank Neuschulz (†) und der Geschäftsführer des landwirtschaftlichen Betriebes, Horst Möhring, waren wesentliche Protagonisten dieser Idee, unterstützt schon frühzeitig vom Leiter des Landesumweltamtes, Prof. Dr. Matthias Freude.

Vor allem dem kontinuierlichen Engagement dieser Akteure über fast ein Jahrzehnt ist es zu verdanken, dass aus der Idee tatsächlich im Jahr 2001 ein Projektantrag und letztlich ein erfolgreich umgesetztes Naturschutzgroßprojekt wurde. Da jedoch Naturschutz nicht bei allen regional bedeutsamen Akteuren Priorität für die weitere Entwicklung der ehemaligen deutsch-deutschen Grenzregion hatte, musste ein erhebliches Maß an Überzeugungsarbeit geleistet werden. Politik, kommunale Verwaltung und große Teile der Öffentlichkeit hatten anfangs erhebliche Bedenken. Eine Bürgerinitiative versuchte, zusammen mit dem Projekt andere, nicht unmittelbar damit verbundene, behördliche Naturschutzvorhaben anzufeinden.

Dazu gehörte eine erste Antragsskizze von 1992 für ein EU-LIFE-Projekt, welches in der Flächen- und Finanzausstattung noch wesentlich umfangreicher sein sollte. Die EU-Gutachter empfahlen, hieraus einen kleineren Antrag zu extrahieren, der die Grundlage für das 1994 bewilligte LIFE-Projekt "Auenschutz durch Deichrückverlegung" (LIFE94 NAT/D/000029, 1994-1998) bildete. Dieses beinhaltete Maßnahmen im Raum Lenzen und im Gnevsdorfer Werder und war mit dem Flächenerwerb, der Anzucht gebietsheimischer Gehölze und ersten Auwaldpflanzungen (LILJE & NEUSCHULZ 1996) wegbereitend für das spätere Naturschutzgroßprojekt.

Im Jahr 1993 wurde vom Naturpark ein Gutachten in Auftrag gegeben, welches die Machbarkeit einer Deichrückverlegung bestätigte und erste Skizzen und technische Überlegungen lieferte (UTAG 1993). Das Landesumweltamt beauftragte für die Elbdeichsanierung zwischen Wittenberge und Wootz eine Umweltverträglichkeitsstudie, die neben fünf anderen Standorten auch eine 745 ha große Variante für den Standort Lenzen darstellte (IBS 1995).

Für den Naturpark wurde zwischen 1993 und 1996 ein Pflege- und Entwicklungsplan erarbeitet, der Bestand und Entwicklungsziele für den gesamten Raum des späteren Biosphärenreservates beinhaltete. Er umfasste auch das Ziel der Entwicklung von Auenlebensräumen im Bereich der Deichrückverlegung bei Lenzen (Arbeitsgruppe PEP Elbtalaue 1996).

Vertragsnaturschutzmittel für Grünlandextensivierung und Auwaldpflanzmaßnahmen wurden im Projektgebiet seit 1995 eingesetzt. Mittel des Kulturlandschaftsprogrammes (KULAP) des Landes ergänzten zunehmend die Fördermaßnahmen für Wiesenbrüterschutz, kleinflächige Mahd, naturschutzfachliche Zusatzmaßnahmen zur Grünlandextensivierung und für die Förderung von Sukzessionsflächen.

Ein wichtiger Schritt für das Naturschutzgroßprojekt war die Gründung des "Zentrums für Auenökologie, Umweltschutz und Besucherinformation" auf der Burg Lenzen. Der Bund für Umwelt und Naturschutz Deutschland (BUND) e.V. nahm hier die Initiative des Naturparkes auf und gründete gemeinsam mit der Stadt Lenzen und dem lokalen Landwirtschaftsbetrieb den Verein "Trägerverbund Burg Lenzen e.V.". Neben dem baulichen Erhalt der Burg Lenzen und der Etablierung des Auenökologischen Zentrums übernahm diese Allianz im Jahr 2001 die Aufgabe, ein Naturschutzgroßprojekt mit Deichrückverlegung im Rahmen des Bundesprogrammes zur Förderung gesamtstaatlich repräsentativer Projekte zu beantragen und als Projektträger durchzuführen.

Das Verbundforschungsprojekt "Möglichkeiten und Grenzen der Auenregeneration und Auenwaldentwicklung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg)", gefördert von dem Bundesministerium für Bildung und Forschung (BMBF) von 1996 bis ins Jahr 2000, war ein weiterer wichtiger Meilenstein auf dem Weg zum Naturschutzgroßprojekt.

Acht verschiedene Fachrichtungen, meist universitärer Institutionen, erarbeiteten umfassende wissenschaftliche Grundlagen zur Deichrückverlegung in den Bereichen Grundwasser (v. a. Qualmwasser), Bodenkunde, Vegetation, Zoologie, Forstwirtschaft, Landwirtschaft, Sozioökonomie und Akzeptanz (Neuschulz et al. 1997, Biosphärenreservat Flusslandschaft Elbe-Brandenburg 1999). Diese Daten sind von besonderem Wert, da damit die Deichrückverlegung bei Lenzen zur vielleicht am besten dokumentierten Maßnahme dieser Art wurde und beste Voraussetzungen für weitere Untersuchungen vorliegen. Darüber hinaus hat diese wissenschaftliche Grundlage das Planungs- und Genehmigungsverfahren an vielen Stellen vereinfacht und die Akzeptanz für das Vorhaben durch seine objektiven Aussagen vergrößert.

Parallel dazu hat die Bundesanstalt für Wasserbau (BAW) seit 1997 die Maßnahme intensiv untersucht, verschiedene Varianten der Deichrückverlegung entwickelt und bewertet. Mit verschiedenen gegenständlichen und rechnergestützten Modelltechniken wurden zuletzt drei Varianten (670 ha, 420 ha, Null-Variante) untersucht, aus denen in Abstimmung zwischen Land und Landnutzern letztlich die mittlere, 420 ha große Variante akzeptiert und in die Umsetzung gebracht wurde. Auch wenn damit nicht das lokal mögliche Maximum an Retentionsraum-Wiederherstellung ausgewählt wurde, so ist damit doch die bis heute in Deutschland größte Deichrückverlegung realisiert worden. Zudem wurde die hydraulische Wirksamkeit der Deichrückverlegung durch die BAW wissenschaftlich zunächst prognostiziert und 2011 durch Wasserspiegelmessungen im Hochwasserfall verifiziert.

Weitere Forschungsarbeiten wurden parallel u. a. im landwirtschaftlichen Bereich durchgeführt. Hier arbeitete der Landwirtschaftsbetrieb v. a. mit der Universität Rostock, dem Forschungsinstitut Dummerstorf und der Humboldt Universität zusammen. Neben Untersuchungen zur extensiven Grünlandbewirtschaftung (u. a. der sogenannte "Dreifelderversuch") wurde der Einsatz von alten Hausschweinrassen für die Initiierung von Auwald durch Bodenumbruch erforscht (MICKLICH ET AL. 1996).

Die Umsetzung des Naturschutzgroßprojektes wurde durch das im Jahr 2000 eingeleitete Bodenordnungsverfahren Lenzen erheblich erleichtert. Auf Antrag der Landwirtschaft und des Biosphärenreservates wurde in diesem Verfahren durch das Amt für Flurneuordnung Neuruppin die Zusammenlegung von Eigentumsflächen des Landes Brandenburg im Deichrückverlegungsraum umgesetzt. Schon im EU-Life-Projekt wurde Land erworben. Gleichzeitig fanden Landtauschverfahren statt. Weitere Projektflächen wurden erworben, die privaten und anderen Eigentümer monetär oder mit Austauschflächen entschädigt und die Flächen des Landes im Rückverlegungsgebiet zusammengelegt.

Ein nicht unerheblicher Erfolgsfaktor für das Projekt war die kontinuierliche Unterstützung der Projektidee durch die brandenburgische Landesregierung. Gerade dieser politische und administrative Rückhalt ist es, der anderen, vergleichbaren Projekten oft fehlt. Dennoch blieb auch in diesem Fall die Umsetzung nicht zuletzt aufgrund der ungeklärten Finanzierung bis zuletzt unsicher. Wenn auch die Sanierung des Elbedeiches ohnehin auf der Agenda stand, so war für die Finanzierung der Mehrkosten eines zurückverlegten Deiches eine andere Quelle zu erschließen. Eine kleine Deichrückverlegung am Bösen Ort wäre unter Umständen aus Hochwasserschutzmitteln des Landes in Betracht gezogen worden, wurde aber zu keiner Zeit planerisch weiterverfolgt. Diese hätte naturschutzfachlich und für die Hochwasserretention keine vergleichbaren Vorteile gehabt, sondern wäre allein aus hydraulischen Gründen zur Verringerung der Belastung des Deiches am Bösen Ort erwogen worden.

Eine realistische Chance zur Deckung der erforderlichen Mehrkosten ergab sich erst mit der Idee, das Vorhaben in einem Naturschutzgroßprojekt des Bundes umzusetzen. Das bereits genannte Förderprogramm zur Errichtung und Sicherung schutzwürdiger Teile von Natur und Landschaft mit gesamtstaatlich repräsentativer Bedeutung des Bundesamtes für Naturschutz, eröffnete diese Möglichkeit. Der Trägerverbund Burg Lenzen e.V. war mit seiner Allianz aus unmittelbar betroffenen Akteuren, der Intention als Umweltbildungseinrichtung und der räumlichen Lage unmittelbar am Projektgebiet der ideale Antragsteller. Er konnte zudem die laut Förderrichtlinie neben dem 18%igen Landesanteil erforderlichen 7% der Projektkosten als Eigenanteil durch die Aktivierung verschiedener weiterer Umweltstiftungen (BUND Bundesverband e.V., Bingo Lotto Niedersachsen, Deutsche Umwelthilfe e.V., Naturschutzfonds Brandenburg, Michael Otto Stiftung) aufbringen. Der auf den umfangreichen Vorarbeiten des Biosphärenreservates aufbauende Antrag wurde 2001 eingereicht. Das Augusthochwasser 2002 an der Elbe bot eine beispiellose Kulisse für die Übergabe des Bewilligungsbescheides durch den damaligen Umweltminister Jürgen Trittin am "Bösen Ort". Damit konnte das Projekt am 1. Oktober 2002 beginnen.

2 Projektziele

Im Zentrum des Naturschutzgroßprojektes stand die Wiederherstellung von Auwald, welcher bis zum Anfang des 19. Jahrhunderts in der Lenzener Elbtalaue ("Lenzer Kuhbläncke") vorhanden war. Die in den Flussauen Mitteleuropas ehemals weit verbreiteten Weichholz- und Hartholzauenwälder gehören heute zu den gefährdetsten Biotoptypen und sind als prioritär zu schützende Lebensraumtypen in der FFH-Richtlinie klassifiziert. Da intakte Auwälder regelmäßig der direkten Überflutung ausgesetzt sein müssen und überflutbare Bereiche an der Elbe durch die umfangreichen Deichanlagen weitgehend verschwunden sind, ist die 2011 abgeschlossene, 420 ha umfassende Deichrückverlegung ein wesentlicher Bestandteil des Naturschutzgroßprojektes. Neben der Erhöhung des Auwaldanteiles auf ca. 300 ha sollen auf den ehemaligen Grünlandflächen des Projektgebietes auch alle weiteren, für die Auen der Mittleren Elbe charakteristischen, Lebensräume wieder entstehen. Dabei wurde nach Umsetzung einiger Initialmaßnahmen die weitere Entwicklung den spontan ablaufenden Prozessen überlassen. Zu den Initialmaßnahmen gehört, neben der Öffnung des Retentionsraumes und der Anpflanzung von ca. 77 ha Auwald, die Anlage von 45 ha Flutmulden für Gewässerlebensräume.

Eine dauerhafte Maßnahme stellt die Einrichtung der halboffenen Weidelandschaft im Ostteil des Rückdeichungsgebietes dar, in der Robustpferde der Rasse Liebenthaler Wildlinge die teilweise Offenhaltung der Landschaft als funktioneller und landschaftsästhetischer Kontrast zu den Gewässer- und Auwaldlebensräumen erhalten sollen.

Die nachfolgende Auflistung gibt einen Überblick über die im Naturschutzgroßprojekt umgesetzten Maßnahmen:

Förderphase I (Planungsphase, 10/2002 bis 2/2005)

11/2002	Einrichtung Projektbüro
2003-2005	Erstellung des Pflege- und Entwicklungsplanes
2003-2004	Moderationsverfahren
2003	Beginn Pflanzenanzucht für Auwaldpflanzungen
2003-2005	Begleitung des Planungs- und Genehmigungsverfahrens für die Deichbau- maßnahmen
2004-2005	Erste Pflanzmaßnahmen

Förderphase II (Umsetzungsphase, 10/2005 bis 9/2011)

2005-2008	Neubau des rückverlegten Deiches (6.110 m) und Anlage von Flutmulden, unter Verwendung des Bodenaushubs zum Deichbau
2009-2011	Öffnung (2009) und Umbau des Altdeiches
2004-2008	Auwaldpflanzungen
2007-2008	Förderung von Stromtalwiesen durch Mahdgutübertragung
2009-2010	Wegebau Gandower Fährdamm
2010	Einbau von Staubauwerken im Qualmwasserbereich
2010	Bau der Informationshütte "Auenblick" am Bösen Ort, Installation von Informa-
	tionstafeln im Projektgebiet

Ein weiterer Schwerpunkt des Naturschutzgroßprojektes lag von Beginn an auf der umfassenden Öffentlichkeitsarbeit durch eine breite Palette von Informationsveranstaltungen wie Exkursionen, Tagungen und Seminare. Begleitend wurden Broschüren, Internetauftritte, Kurzfilme und wissenschaftliche Veröffentlichungen erarbeitet.

Danksagung

Ich danke Herrn Horst Möhring, Herrn Günter Kalfak, Herrn Rainer Fritze, Frau Ulrike Hastedt, Herrn Dirk Steyer sowie Herrn Stefan Lilje für wertvolle Informationen zu meinen Recherchen.

Literatur

Arbeitsgruppe PEP-Elbtalaue (1996): Pflege und Entwicklungsplan für den Naturpark Brandenburgische Elbtalaue – Endbericht.

BIOSPHÄRENRESERVAT FLUSSLANDSCHAFT ELBE-BRANDENBURG (1999): Ergebnisse des Forschungsvorhabens "Möglichkeiten und Grenzen der Auenregeneration und Auenwaldentwicklung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg)". Auenreport. Sonderband 1/5. Jahrgang. Rühstädt. 124 S.

ELBSTROMWERK (1898): Der Elbstrom. Band III, 1. Abteilung. Königliche Elbstromverwaltung. Dietrich Reimer Verlag. Magdeburg.

IBS (1995): Umweltverträglichkeitsstudie Rekonstruktion rechter Elbedeich Fährstraße Wootz – Hafen Wittenberge. Gutachten des Ingenieurbüros Schwerin für Landeskultur, Umweltschutz und Wasserwirtschaft im Auftrag des Landesumweltamtes Brandenburg, Referat W 6.

- LILJE, S. und F. NEUSCHULZ (1996): EU-LIFE-Projekt zur Auenrenaturierung an der Unteren Mittelelbe (Brandenburg). Tagungsband Ökosystem Elbe Zustand, Entwicklung und Nutzung.
 7. Magdeburger Gewässerschutzseminar, Int. Fachtagung in Budweis: S. 454-455.
- MICKLICH, D., MATTHES, H.-D. und H. MÖHRING (1996): Einsatz verschiedener Schweinerassen in der Landschaftspflege und ihre Wirkung auf die natürliche Sukzession. Auenreport, Beiträge aus dem Naturpark "Brandenburgische Elbtalaue": S. 28-34, Rühstadt.
- NEUSCHULZ, F, PURPS, J. und M. HAPE (1997): Möglichkeiten und Grenzen der Auenregeneration und Auenwaldentwicklung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg) ein Forschungsprojekt des Bundesministeriums für Bildung, Forschung, Wissenschaft und Technologie (BMBF) im brandenburgischen Naturpark Elbtalaue. Auenreport / Beiträge aus dem Naturpark "Brandenburgische Elbtalaue" 3, Rühstädt: S. 52-57.
- STELZIG, I. (1999): Befragung der Bevölkerung der Dörfer Gandow und Wustrow im Naturpark Elbtalaue / Brandenburg zur Auenwaldanpflanzung und Deichrückverlegung. Auenreport Sonderband 1, 5. Jahrg.:115-118. Rühstädt.
- UTAG (1993): Deichtrassenstudie zur Deichrückverlegung zwischen Lenzen und Wustrow. 4. Ausführung 19.11.93. UTAG Consulting GmbH, Ingenieurbüro Wasser und Umwelt (unveröffentlicht).

Hector Montenegro, Bundesanstalt für Wasserbau Karlsruhe, Abteilung Geotechnik

1 Untersuchungsgebiet der Deichrückverlegung bei Lenzen

Die Möglichkeit zur Wiederanbindung einer Aue an den Strom mittels einer Rückdeichung ergab sich aus der Notwendigkeit einer Deichsanierung im Bereich Lenzen (El-km 476,5 - 483,7) und der Gelegenheit, im Zuge einer neuen Deichtrassierung eine Engstelle aufweiten zu können. Die Elbaue zeichnet sich in dieser Gegend durch eine vergleichsweise hohe Naturnähe aus. Noch immer ist die Naturausstattung sehr vielfältig und es sind typische Auenbiotope im Verbund erhalten. Allerdings sind die Bereiche, in denen freie Überschwemmungen wirken können, durch Eindeichungen stark eingeschränkt und Auwälder fehlen fast vollständig. Aus ökologischer Sicht boten diese baulichen Maßnahmen im Biosphärenreservat Flusslandschaft Elbe-Brandenburg Möglichkeiten zur Auwaldrenaturierung durch Wiederanbindung an die Flussdynamik.

1.1 Baumaßnahmen zur hydraulischen Anbindung

Die Rückdeichung wurde durch den kompletten Neubau eines Deichabschnitts von ca. 6 km Länge im Hinterland und der Abtragung des alten, flussnahen Deiches an 6 Stellen (Schlitz 1: El-km 476,5; Schlitz 6: El-km 483,7) baulich umgesetzt. Das für den Deichneubau erforderliche, bindige Material wurde aus dem anstehenden Auelehm in Form von Flutrinnen ausgehoben. Durch diese wurden insgesamt 420 ha Auenfläche an die Elbe hydraulisch angeschlossen und somit der natürlichen Wasserstandsdynamik ausgesetzt.

2 Untersuchungen der Strömungsverhältnisse

Eine Deichrückverlegung dieses Ausmaßes zählt auf europäischer Ebene zu den größten Maßnahmen zur hydraulischen Anbindung und Aufwertung von Auen. Bereits bei der Planung ergaben sich Fragestellungen, die unter Beachtung hydraulischer und ökologischer Anforderungen geklärt werden mussten. Die Bundesanstalt für Wasserbau (BAW) wurde vom damaligen Landesumweltamt (LUA) Brandenburg mit der Untersuchung von Rückdeichungsvarianten im rechten Elbevorland bei Lenzen beauftragt. Durch die BAW wurden die hydraulischmorphologischen Veränderungen infolge der Rückdeichungen untersucht. Eine Bewertung der Maßnahmen erfolgte unter Beachtung der Forderung, dass die Erhaltung des ordnungsgemäßen Zustandes für den Wasserabfluss und die Funktion als Bundeswasserstraße gewährleistet werden musste. Da der mögliche Rückhalteraum nur einen Bruchteil des Wellenvolumens ausmacht (bei der Hochwasserwelle von 1981 mit einem Scheitelabfluss von etwa 3.250 m³/s ca. 0,5 %), wird die Welle unterhalb der Rückdeichung kaum gedämpft. Durch die Durchflussaufteilung zwischen Flussbett und zukünftigem Vorland und die daraus resultierenden Wasserspiegelabsenkungen kommt es jedoch im Umfeld der Rückdeichungen zu Veränderungen des Wasserspiegelgefälles und der Fließgeschwindigkeiten und damit zu einer Beeinflussung des Geschiebetransportes (FAULHABER 1997).

Die Linienführung des neuen Deiches sowie die Lage der Schlitze wurden von der BAW an aerodynamischen und hydronumerischen Modellen intensiv untersucht (BLEYEL, 2000). In dieser Phase standen grundsätzliche hydraulische Aspekte zum Wasseraustausch zwischen Fluss und Vorland sowie Ausführungsdetails im Vordergrund. Die Vorzugsvariante dieser Untersuchungen sah die Füllung des zukünftigen Vorlandes bei anlaufendem Hochwasser zunächst in den unterstromigen Deichschlitzen bereits ab 900 m³/s vor. Die Füllung von Oberstrom beginnt ab etwa $1.200 \, \text{m}^3/\text{s}$. In dieser Variante wird bei voll entwickeltem Auwald bereits bei $HQ_{1-3} = 1.500 \, \text{m}^3/\text{s}$ das zukünftige Vorland über die gesamte Vorlandbreite überströmt.

Im Rahmen des BMBF-Verbundprojekts "Elbeökologie" wurden wissenschaftliche Einrichtungen der Disziplinen Bodenkunde, Botanik, Forstwissenschaft, Landwirtschaft u. a. beauftragt, den bestehenden Zustand zu erfassen und Projektionen zu den Auswirkungen nach der Deichrückverlegung zu erarbeiten. Der Autor dieses Beitrags war seinerzeit für das Institut für Wasserbau und Wasserwirtschaft der TU Darmstadt tätig und verantwortlich für die Untersuchung der Auswirkungen der geplanten Deichrückverlegung auf die Grundwasserverhältnisse der Aue und des neuen Hinterlands (Montenegro et al. 1999).

3 Hydrogeologische Untersuchungen

Im Untersuchungsgebiet liegen für ein Flussauensystem in Mitteleuropa charakteristische hydrogeologische Gegebenheiten vor. So besteht ein ausgeprägter hydraulischer Kontakt zwischen Oberflächenwasser und Grundwasser über die gut durchlässigen Sande und Kiessande an der Flusssohle. Der Grundwasserstand und das Grundwassergefälle in der Aue sind somit unmittelbar vom Flusswasserstand abhängig. Typisch für Flussauen ist weiterhin die Auelehmdecke, die auf der gut durchlässigen Talfüllung aufliegt. Die Bodenschichtung aus gering durchlässigen Auelehmschichten über gut durchlässigen Sanden kann landseitig vom Deich zu artesisch gespannten Bereichen führen. An welchen Stellen Grundwasser nun die Auelehmdecke durchdringt (Qualmwasser), hängt vom vorherrschenden hydraulischen Gradienten, aber auch von der Deckschichtmächtigkeit und dem Vorhandensein von Störungen und Fehlstellen ab. In Niedrigwasserphasen kann es zu einem Übergang von gespannten zu ungespannten Grundwasserverhältnissen kommen (Abb. 1). Die Ausbreitungsgeschwindigkeit von Flusswasserstandsänderungen (und letztlich die Reichweite ins Deichbinnenland) hängt vom jeweiligen Zustand des Grundwasserleiters ab. Unter gespannten Verhältnissen pflanzen sich Wasserstandsänderungen unmittelbar in das Gebiet fort. Unter ungespannten Verhältnissen machen sich Flusswasserstandsänderungen aufgrund des Speichervermögens des Porenraums nur gedämpft und zeitlich verzögert im Hinterland bemerkbar.

Unter natürlichen Verhältnissen fließen der Aue laterale Randzuflüsse zu und geben so die generelle Fließrichtung vom Einzugsgebiet zum Fluss vor (Entlastungsgebiet der Aue). Als Folge kulturtechnischer Maßnahmen weisen eingedeichte Flussauen, zumindest zeitlich, eine andere Charakteristik auf. Durch ein Grabensystem, eine Reihe kleinerer Wehre sowie ein Schöpfwerk können der Wasserstand und die Wasserführung in der Löcknitz so weit gesteuert werden, dass eine Be- oder Entwässerung über das Grabensystem in den eingedeichten Bereichen erfolgen kann.

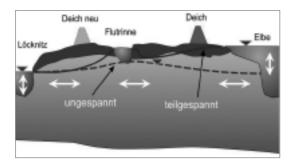


Abb. 1: Schematischer Schnitt durch das Deichrückverlegungsgebiet im Bereich Lenzen. Je nach Flusswasserständen ergeben sich gespannte oder ungespannte Grundwasserverhältnisse.

Nach der Deichrückverlegung stellen sich komplexere Grundwasserströmungsverhältnisse ein, wie in einem Schnitt quer durch die Aue in Abb. 1 skizzenhaft dargestellt ist. So kann das Grundwasser bei bestimmten Wasserständen in die neu geschaffenen Flutrinnen exfiltrieren. Ab bestimmten Abflüssen findet eine Einströmung in das Vorland über die Flutrinnen statt, was an der Flutrinnensohle zu einer Infiltration sowie einer lokalen Erhöhung der Grundwasserpotentiale führt. Die Infiltration kann lange andauern, da nicht sämtliches Wasser oberflächig abfließt (MONTENEGRO ET AL. 2000).

4 Wirkungszusammenhang zwischen der Vorlandüberströmung und dem Grundwasser

Sehr wesentlich für den Austausch zwischen Oberflächenwasser und Grundwasser ist der Grad des hydraulischen Anschlusses an der Sohle der Flutrinnen. Dieser wird von derzeit nicht genau verstandenen Kolmationsprozessen gesteuert. Um den Wirkungszusammenhang zwischen Vorlandüberströmung und dem Grundwasser zu analysieren, ist eine örtlich und zeitlich hinreichend aufgelöste Erfassung der hydraulischen Potentiale sowohl in der einströmenden

Abb. 2: Einströmung durch den südlichsten Schlitz (Schlitz 1) (Foto: Archiv Biosphärenreservat 08/2010).

Welle als auch im Grundwasser erforderlich. Zur Erfassung der Grundwasserverhältnisse wurden vor der Deichrückverlegung 12 Piezometermessstellen im Quartäraquifer unterhalb der Deckschichten eingerichtet. Um die Einströmung von Hochwasserwellen detailliert zu erfassen, konnten mit Unterstützung der Bundesanstalt für Gewässerkunde (BfG) Oberflächenwassermessstellen eingerichtet werden. In Abb. 2 ist die Einströmung durch den südlichsten Schlitz während eines Hochwasserereignisses im März 2010 zu sehen.

5 Anforderungen an die Datenerfassung

Die Messdatenerfassung in einem Naturschutzgebiet geht, zumindest phasenweise, mit nicht zu unterschätzenden Restriktionen einher. Beim Brutvogelmonitoring 2007 - 2009 wurden beispielsweise 38 wertgebende, geschützte Arten erfasst, wodurch sich Einschränkungen ergeben. Die Einschränkungen begrenzen die mögliche Aufenthaltszeit von Personen im Schutzgebiet auf max. 1 h während sensibler Zeiten, was wiederum eine weitgehende Abstimmung mit anderen Projektbeteiligten erfordert. Während der Zugzeit (August/September und Februar/März) sollen beispielsweise Flutmulden nicht begangen werden, allenfalls darf nur eine Flutmulde betreten werden.

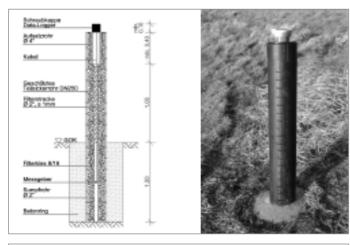


Abb. 3: Systemskizze (links) und Foto (rechts) einer Messstelle zur Erfassung der Wasserstände bei Überflutungsereignissen. (Foto: HECTOR MONTENEGRO 11/2011).

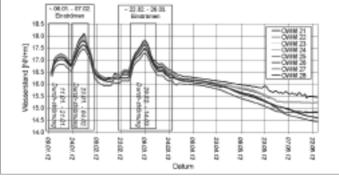


Abb. 4: Ganglinien der Oberflächenwassermessstellen und Überflutungszeiträume.

5.1 Konstruktion der Oberflächenwassermessstellen

Aus den Untersuchungen zur Einströmung in das Deichrückverlegungsgebiet (BAW, Referat W2) geht hervor, dass bei Einströmungsereignissen große Zuflüsse auftreten und folglich mit erheblichen Strömungskräften im Vorlandbereich zu rechnen ist. Hieraus ergeben sich besondere Anforderungen an die Robustheit der Oberflächenwassermessstellen. Diese Anforderungen wurden bei der Konzeption der in Abb. 3 dargestellten Oberflächenwassermessstellen berücksichtigt. Die Messstelle besteht aus einem dickwandigen perforierten Rohr, das in einem 1 m tiefen Betonfundament fixiert ist. Innerhalb des äußeren Rohres befindet sich ein weiteres Filterrohr, in das der Druckaufnehmer eingehängt wird. Zur Erhöhung der Gesamtstabilität ist der Zwischenraum mit an die Filterschlitzweite beider Rohre angepasstem Filterkies verfüllt, der zudem einen übermäßigen Eintrag von Schwebstoffen verhindert.

Um Zugangsbeschränkungen, die aus naturschutzfachlichen Auflagen oder Überflutungen resultieren, zu umgehen, ist ein Messwerterfassungssystem mit Datenfernübertragung erforderlich. Darüber hinaus muss der Batteriestand des Messsystems per Fernabfrage zu ermitteln sein, um hinreichend langfristig die Wartung bzw. den Batteriewechsel planen zu können. Um Energie einzusparen, ist es ferner erforderlich den Messtakt an die tatsächlichen Strömungsereignisse anzupassen. So reichen bei mittlerem Abfluss Tagesmittelwerte vollkommen aus. Einströmungsereignisse erfordern hingegen eine deutlich höhere zeitliche Auflösung. Die Anpassung der zeitlichen Aufzeichnungsdichte muss daher jederzeit per Fernübertragung machbar sein.

Die gemessenem Grundwasser- und Oberflächenwasserdaten werden seit Anfang 2012 auf einem Webserver gesammelt und können als Ganglinien grafisch ausgewertet, angesehen oder als Rohdaten abgerufen werden. Die Ganglinien seit Frühjahr 2012 sind in Abb. 4 dargestellt (die bei der Messstellenbezeichnung voran stehende 2 zeigt an, dass es sich um eine Oberwassermessstelle handelt). Eingerahmt sind die Zeiträume der Ein- sowie der Durchströmung des Deichrückverlegungsgebiets. Diese Messdaten bilden eine wesentliche Randbedingung für das bereits bestehende numerische Grundwasserströmungsmodell, mit dem der Wirkungszusammenhang zwischen Abflussdynamik und Grundwasser am Standort Lenzen näher untersucht werden soll.

Literatur

- FAULHABER, P. (1997): Hydraulisch-morphologische Untersuchung von Rückdeichungen bei Lenzen (Elbe). Auenreport Beiträge aus dem Naturpark "Brandenburgische Elbtalaue" 3/1997, Landesanstalt für Großschutzgebiete, Rühstädt, S. 66-81.
- BLEYEL, B. (2001): Zweidimensionales hydraulisch-numerisches Modell "Lenzen". Wasserwirtschaft Wassertechnik Nr. 8, 2001, S. 24-28.
- Montenegro, H., Holfelder, T. und B. Wawra (1999): Untersuchung der Wechselwirkungen zwischen Oberflächengewässer und Grundwasser in Flußauen. Auenreport Beiträge aus dem Biosphärenreservat Flusslandschaft Elbe-Brandenburg. Sonderband 1, S. 27-40.
- Montenegro, H., Holfelder, T. und B. Wawra (2000): Modellierung der Austauschprozesse zwischen Oberflächenwasser- und Grundwasser in Flußauen. In: Friese, K., Witter, B., Miehlich, G. und M. Rode (Hrsg.): Stoffhaushalt von Auenökosystemen. Böden und Hydrologie, Schadstoffe, Bewertungen. Springer Verlag, Berlin. S. 89-98.

Hydraulische Wirkung der Deichrückverlegung Lenzen an der Elbe

Zusammenschau von Modellierungen und Naturmessungen

Petra Faulhaber, Matthias Alexy, Bundesanstalt für Wasserbau, Karlsruhe

1 Untersuchungen der BAW zur Deichrückverlegung bei Lenzen

Seit Mitte der 1990er Jahre wurden von der Bundesanstalt für Wasserbau (BAW) im Auftrag des damaligen LUA Brandenburg (BAW 1997) und im Rahmen der "Elbeökologie"-Forschung (u. a. BAW 2000; BLEYEL 2001) Untersuchungen zu Deichrückverlegungen im Bereich Lenzen durchgeführt.

Im Rahmen der ersten Untersuchungen der BAW von 1995 bis 2000 wurden die hydraulischmorphologischen Veränderungen durch drei Rückdeichungen zwischen Lütkenwisch und Mödlich untersucht. Der umfangreichste Rückdeichungsbereich bei Lenzen sollte nach den ersten Planungen innerhalb des Untersuchungsgebietes oberhalb von Lenzen zwischen Elbe (El)-km 476,5 und 483,7 zu einer Ausdeichung von etwa 700 ha unbesiedelter Fläche ins Deichvorland führen. Der alte Deich sollte als abgesenkter Uferwall bestehen bleiben und mit 9 Schlitzen unterbrochen werden. Dadurch war zusätzlich zur Überströmung des Altdeiches eine frühzeitige Einströmung in das neue Vorland vorgesehen.

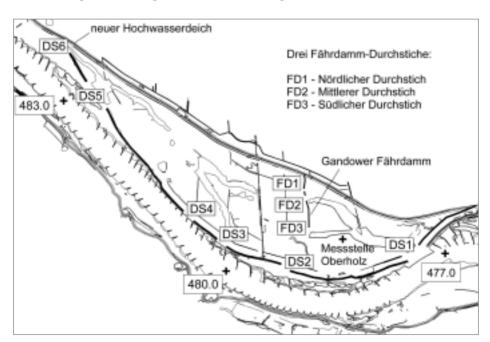


Abb. 1: Lageplan, DS = Deichschlitz.

Im Verlaufe der Untersuchungen wurde die Anzahl der Schlitze im Altdeich verringert. Der Leitdeich vor dem ersten Schlitz wurde in seiner Lage und Größe optimiert. In späteren Varianten blieb der Altdeich in voller Höhe bestehen, auf dem neuen Vorland wurden Flutrinnen angeordnet, für die der Fährdamm durchbrochen wurde. Letztendlich wurden mit dem Neubau eines 7 km langen Deiches im Hinterland und der Abtragung des alten, flussnahen Deiches in sechs Schlitzen (Abb. 1) 420 ha Überschwemmungsfläche für die Elbe zurück gewonnen. Für diese Variante wurden ab 2004 im Auftrag des Bundesamtes für Naturschutz (BfN) verschiedene Fragestellungen (Modifikation des Fährdamms, Bewuchsentwicklung) mit Hilfe eines 2D-numerischen Modells untersucht (BAW 2004, 2009).

Das Modell steht weiterhin bei Bedarf zur Verfügung. So wird es derzeit für das Teilprojekt "Anpassungsstrategien im Biosphärenreservat Niedersächsische Elbtalaue am Beispiel der Auenlebensräume" innerhalb des KLIMZUG NORD - Verbundvorhabens eingesetzt, um ein klimaangepasstes integriertes Flussauenmanagement zu entwickeln. Mit dem Modell der BAW werden die Wasserspiegel bei unterschiedlichen Durchfluss- und Vegetationsszenarien ermittelt (s. a. BAW 2012).

Die Modelle prognostizierten nach realisierter Deichrückverlegung, gegenüber dem Zustand davor, ein Absinken des Wasserspiegels oberhalb von Deichschlitz 5, mit maximalen Absenkungswerten am ersten Deichschlitz. Durch die Deichrückverlegung wird die hydraulische Engstelle aufgeweitet. Dadurch wird der ursprüngliche Aufstau in Folge einer oberhalb von Lenzen bei Hochwasser wirkenden Engstelle vermindert. Mit steigendem Durchfluss erhöhen sich Durchflussanteile des neuen Vorlandes, so dass der Wasserspiegelabsunk zunimmt (im aktuellen 2D-Modell maximal 35 cm bei damaligem $HQ_{100} = 4.020 \, \text{m}^3/\text{s}$). Im Bereich der Schlitze DS 5 und DS 6 wurde eine geringe Wasserspiegelerhöhung (ca. 6 cm bei HQ_{100}) vorhergesagt.

Die Berechnungen zeigten keinen Einfluss auf die Hochwasserstände unterhalb der Maßnahme infolge eines veränderten Wellenablaufs. Unterstrom der Rückdeichungsstrecke sind jedoch langfristig Einflüsse auf den Wasserspiegel durch Änderungen des Feststofftransports zu erwarten. Kurzfristige Behinderungen der Schifffahrt nach Hochwasser konnten trotz optimierter Schlitzanordnung nicht ausgeschlossen werden.

2 Naturmessungen

Im Jahr 2009 wurden die Altdeichschlitze geöffnet, so dass bei Hochwasser nun das neue Vorland durchströmt wird. Da in den folgenden Jahren gleich mehrere Hochwasserereignisse auftraten, konnte die Wirkung dieser Maßnahme mehrfach beobachtet werden.

Um die Modellprognosen zu überprüfen und numerische Modelle für weitere Fragestellungen zu aktualisieren, beauftragte die BAW verschiedene Naturmessungen. Das Interesse der BAW konzentrierte sich dabei im Bereich des Oberflächenwassers und des Feststofftransportes auf folgende Aspekte:

- Wirkungen auf die Schifffahrtsverhältnisse,
- Wasserspiegel bei Hochwasser im Flussbett und am Deich,
- Durchflussanteile über das Vorland,
- Wassertiefen und Geschwindigkeiten auf dem Vorland,
- Geschwindigkeiten in den Schlitzen,
- zeitliche Wasserspiegeländerungen während Hochwasserwellen,
- langfristige Veränderungen der Flusssohle (Epochenvergleich).

Punkt 1 ist für die Wasser- und Schifffahrtsverwaltung (WSV) von großem Interesse, da lokale Anlandungen insbesondere im Bereich um Schlitz DS 1 bei den Modelluntersuchungen zur Projektvorbereitung nicht ausgeschlossen werden konnten. Punkt 2 ist erforderlich zur Kontrolle des Hochwasserschutzes. Die Punkte 3 bis 6 sind hauptsächlich zur Überprüfung der Aussagefähigkeit der Modelle der BAW von Interesse. Unter Punkt 7 werden im Rahmen der Routineuntersuchungen der WSV zur Erosionskontrolle erst künftig Aussagen zur Wirkung der Deichrückverlegung auf die langfristige Entwicklung der Sohlhöhen möglich sein.

Für den Naturvergleich des Zustandes vor und nach der Deichrückverlegung bieten sich insbesondere die Hochwasser (HW) vom April 2006 und Januar 2011 an. Beide Hochwasser liefen im Winterhalbjahr und bei ähnlichem Durchfluss am Pegel Wittenberge (Scheitelwerte April 2006: 3.720 m³/s und Januar 2011: 3.790 m³/s) ab. Das Sommerhochwasser im August 2002 hatte einen Scheiteldurchfluss von 3.830 m³/s.

3 Messungen des Wasserspiegels

Die punktuelle Auswertung der Pegelwasserstände zeigt am Pegel Schnackenburg den prognostizierten Wasserspiegelabsunk im Vergleich der Hochwasser 2011 zu 2002 bzw. 2006 zwischen 20 und 30 cm. Um weiterführende Aussagen zu lokalen Wasserspiegeln, Durchflussanteilen, Fließgeschwindigkeiten und der Wirkung auf die Gewässerbettgestalt treffen zu können, waren detaillierte Naturdaten erforderlich. Die BAW beauftragte deshalb hydraulische Messungen des Oberflächenabflusses und Peilungen der Gewässerbettsohle.

Im Auftrag der Wasser- und Schifffahrtsverwaltung werden Messungen der Wasserspiegel (Fixierungen) vorgenommen. Diese Messungen werden mit Schiffen, die sich in Gewässermitte nahezu mit Fließgeschwindigkeit bewegen, durchgeführt. Solche Messungen liegen für weite Abschnitte der Elbe in Scheitelnähe für die Hochwasser 2002, 2006 und 2011 vor. Beim Vergleich von Wasserspiegelfixierungen bei Hochwasser sind Ungenauigkeiten zu erwarten, da unter schwierigen Bedingungen gemessen wird. Die Durchflusszuordnung bleibt unsicher. Deshalb werden in Abb. 2 zum Vergleich vereinfacht die Durchfluss-Tagesmittelwerte am Pegel Wittenberge angegeben. Gegenüber der punktuellen Pegelauswertung kann in Abb. 2 der Wasserspiegel auf der gesamten Strecke zwischen El-km 460 und 500 mit und ohne Deichrückverlegung verglichen werden. Durch die Deichrückverlegung wird – wie prognostiziert – der Scheitelwasserstand abgesenkt und das Gefälle bei Hochwasser ausgeglichen.

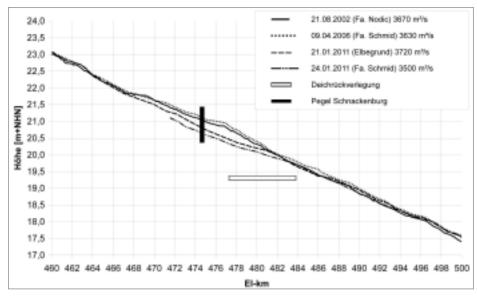


Abb. 2: Wasserspiegelmessungen der Hochwasser 2002, 2006 und 2011.

Eine Zusammenschau der verfügbaren Strömungsmessungen und Sohlpeilungen gibt Abb. 3. Die Messtage sind der Durchflussganglinie des Pegels Wittenberge zugeordnet. Zum Vergleich sind die Hauptwerte 1971/2010 eingetragen.

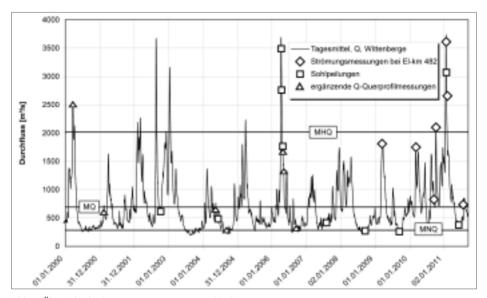


Abb. 3: Übersicht der Strömungsmessungen und Peilungen.

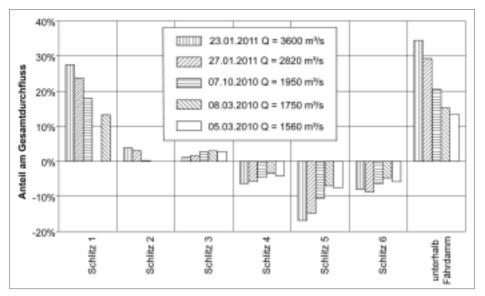


Abb. 4: Anteile des Durchflusses der Schlitze im Altdeich und über das rechte Vorland (unterhalb des Fährdamms) am Gesamtdurchfluss.

Die Strömung kann in der Natur infolge der großen Wasserflächen nur lokal gemessen werden. So wurden Fließgeschwindigkeiten in den Schlitzen und entlang des Fährdamms sowie in einigen ausgewählten Querprofilen gemessen. Die daraus ermittelten Anteile am Gesamtdurchfluss (Abb. 4) zeigen die Beaufschlagung der verschiedenen Schlitze und den Durchflussanteil des rechten Vorlandes (unterhalb des Fährdamms). Positive Werte bezeichnen die Einströmung ins Vorland, negative Werte die Rückströmung ins Gewässerbett. Im März 2010 konnte in den Schlitzen DS 1 (nur 5.3.2010) und DS 2 nicht gemessen werden. Hauptsächlich strömt Wasser durch den Schlitz DS 1 ins Vorland. Die Rückströmung verteilt sich auf die Schlitze DS 4 bis DS 6 (Abb. 1). Über das neu gewonnene Vorland wurden bis zu 30 % des Gesamtdurchflusses abgeführt. Der Durchflussanteil nimmt mit steigendem Durchfluss zu.

4 Validierung des aktuellen 2D-Modells für die Oberflächenströmung

In Amtshilfe für das BfN wurde das aktuelle Modell für das hydronumerische Verfahren Un-TRIM aufgebaut. UnTRIM ist ein semi-implizites Finite-Volumen-Verfahren zur Lösung der hydrodynamischen Gleichungen für Strömungen mit freier Oberfläche. Es arbeitet auf unstrukturierten Gittern, so dass das Modell einfach an die Topografie angepasst werden kann. In den hier speziell zu untersuchenden Vorland- bzw. Rückdeichungsbereichen treten nur sehr geringe vertikale Geschwindigkeiten auf. Deshalb konnten die Sekundär-Strömungseffekte vernachlässigt werden und somit ein tiefengemitteltes 2D-Modell zum Einsatz kommen.

Das derzeit in der BAW betriebene 2D-Modell basiert auf dem Topografiezustand 2004. Die Kalibrierung des Modells erfolgte auf der Grundlage von vor der Deichrückverlegung durchgeführten Wasserspiegelfixierungen (2004 bis 2008), welche das gesamte Durchflussspektrum abdeckten. Beginnend mit den niedrigen Durchflüssen wurden zunächst die Rauheitswerte für den Flussschlauch, die Uferbereiche und schließlich für die Vorländer festgelegt. Die Abweichungen zwischen den gemessenen und gerechneten Wasserspiegeln bewegen sich im 10 cm-Bereich, wobei die Rauheiten über den gesamten Durchflussbereich konstant gehalten wurden.

Für die zu untersuchende Deichrückverlegung fanden im aktuellen Modell die letztendlichen Umsetzungsvorgaben Berücksichtigung, Gegenüber den früheren Untersuchungen der BAW wurde u. a. der Verlauf des Hochwasserdeiches verändert, die Flutrinnen im Vorland wurden verkleinert und die Lage und Struktur der Auwaldpflanzungen modifiziert.

Die Naturmessdaten, die bei der ersten Überströmung des neuen Vorlandes im März 2010 gewonnen wurden, ermöglichten eine Überprüfung der Modellprognosen. Die Ergebnisse sind in einem Bericht (BAW 2011) und auszugsweise in ALEXY & FAULHABER (2011) zusammengefasst. Es ergab sich eine gute Übereinstimmung von Mess- und Rechenwerten. Die Naturmessungen beim Hochwasser im Januar 2011 ermöglichten eine Modellvalidierung auch für ein sehr hohes Hochwasser. Diese Ergebnisse werden in einem Mitteilungsheft der BAW veröffentlicht (in Vorbereitung), das eine Zusammenschau verschiedener Untersuchungen im Umfeld der Deichrückverlegung Lenzen geben wird.

Fazit und Ausblick 5

Die Deichrückverlegung Lenzen stellt ein Großprojekt dar, das bereits im Vorfeld hinsichtlich unterschiedlicher Aspekte umfangreich untersucht wurde. Die dadurch verfügbaren Daten für den Zustand vor der Maßnahme bieten eine gute Grundlage für eine detaillierte Erfolgskontrolle hinsichtlich der mit dieser Maßnahme beabsichtigten Veränderung der Strömungsverhältnisse. Dazu sind auch nach der Maßnahme entsprechende Naturmessungen, Untersuchungen und Auswertungen erforderlich. Die gewonnenen Kenntnisse sind darüber hinaus eine wichtige Grundlage für die Planung künftiger Maßnahmen, zum Verständnis der Wirkzusammenhänge, als Datengrundlage für biologische Untersuchungen und zur Verbesserung der Prognoseinstrumente.

Die gute Prognosefähigkeit des bestehenden 2D-Modells konnte nachgewiesen werden. Der Vergleich verschiedener Modellarten hatte bereits im Verlauf der Untersuchungen gezeigt, dass die zu Beginn der Untersuchungen genutzten 1D-Modelle zutreffende Prognosen, z. B. hinsichtlich der Wasserspiegel im Gewässerbett, lieferten.

In der Zukunft ist das Monitoring fortzusetzen. So werden Vergleiche der Wasserspiegel und Peilauswertungen Aussagen zur langfristigen Entwicklung der Sohle im Gewässerbett ermöglichen. Dadurch können u. a. die Prognosen des eindimensionalen Feststofftransportmodells überprüft werden.

Darüber hinaus wurden im Rückdeichungsgebiet weitere Messstellen für Grund- und Oberflächenwasserstände installiert, die eine detaillierte Beurteilung instationärer Ereignisse hinsichtlich der Interaktion von Oberflächen- und Grundwasser erlauben (vgl. MONTENEGRO in diesem Band).

Das numerische Modell für die Oberflächenströmung wird ggf. nach Vorliegen der aktuellen Geometriedaten (neue Befliegung, Schlussmessung des Bauvorhabens) aktualisiert.

Eine Koordinierung der verschiedenen Aktivitäten durch das Land Brandenburg bleibt weiterhin wünschenswert, so dass auch künftig ein Ansprechpartner das Wissen über Daten, Berichte und Untersuchungen bündelt.

Literatur

- ALEXY, M. und P. FAULHABER (2011): Hydraulische Wirkung der Deichrückverlegung Lenzen an der Elbe. Wasserwirtschaft Heft 12: S. 17-22.
- BAW (1997): Gutachten über hydraulische Untersuchungen der Rückdeichung Lenzen, Bundesanstalt für Wasserbau Karlsruhe, Berlin, (unveröffentlicht).
- BAW (2000): Untersuchung der Auswirkung von Maßnahmen im Elbevorland auf die Strömungssituation und die Flussmorphologie am Beispiel der Erosionsstrecke und der Rückdeichungsbereiche zwischen Wittenberge und Lenzen. Schlussbericht 1999 im Rahmen der ökologischen Forschung in der Stromlandschaft Elbe (Elbe-Ökologie) des BMBF, Teilkonzept "Ökologie der Fließgewässer", Bundesanstalt für Wasserbau Karlsruhe (FKZ0339575, http://elise.bafg.de).
- BAW (2004): Deichrückverlegung bei Lenzen Hydraulische Bemessung von Durchstichen im Gandower Fährdamm. Im Auftrag des Bundesamtes für Naturschutz, Bundesanstalt für Wasserbau Karlsruhe (3.02.10093.00, unveröffentlicht).
- BAW (2009): Deichrückverlegung an der Elbe bei Lenzen Auswirkung der Querschnittsaufweitung sowie geplanter Vorlandanpflanzungen auf die Hochwasserlagen. Im Auftrag des Bundesamtes für Naturschutz, Bundesanstalt für Wasserbau Karlsruhe (3.02.1012101, unveröffentlicht).
- BAW (2011): Rückdeichung Lenzen Modellvalidierung anhand erster Hochwassermessungen nach erfolgter Rückdeichung. Im Auftrag des WSA Magdeburg, Bundesanstalt für Wasserbau Karlsruhe (3.02.10105-02, unveröffentlicht).
- BAW (2012): Computergestützte Gewässermodellierung. BAW-Aktuell, Info-Magazin der Bundesanstalt für Wasserbau Heft 01/2012: 6-9 (http://www.baw.de).
- BLEYEL, B. (2001): Zweidimensionales hydraulisch-numerisches Modell "Lenzen". Wasserwirtschaft Wassertechnik Nr. 8, 2001: S. 24-28.
- FAULHABER, P. (1997): Hydraulisch-morphologische Untersuchung von Rückdeichungen bei Lenzen (Elbe). Auenreport-Beiträge aus dem Naturpark "Brandenburgische Elbtalaue" 3/1997, Rühstädt: S. 66-81.

Boden- und Sedimentqualitäten aus der Rückdeichungsfläche Lenzen

Frank Krüger, ELANA, Arendsee

Einleitung

Im Rahmen des Naturschutzgroßprojektes "Lenzener Elbtalaue" wurden durch Deichschlitzung und Deichneubauten ca. 420 ha zusätzliche Überschwemmungsfläche geschaffen (Abb. 1), die 2010 erstmalig einer Überflutung ausgesetzt waren. Noch vor der Überflutung wurden auf unterschiedlich alten Waldstandorten Dauer-Monitoringflächen für Böden eingerichtet (im Grünland erfolgte die Anlage von Boden-Dauerbeobachtungsflächen durch das Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV)). Die Monitoringflächen erlauben neben der Beschreibung des Status Quo zukünftige Vergleichsuntersuchungen, wenn die Böden durch Sedimenteinträge und neue hydrologische Bedingungen stoffliche und oder morphologische Veränderungen erfahren. Zusätzlich wurden während des ersten Hochwassers im Frühjahr 2010 Hochflutsedimente gewonnen, anhand derer die zukünftigen stofflichen Veränderungen abgeschätzt werden sollten. Eine Zusammenfassung der bodenkundlichen Evaluation des Elbe-Ökologie Forschungsansatzes erfolgt in Krüger (2010).

Untersuchungsdesign für Böden und Sedimente

Kriterien für die Anlage der Boden-Monitoringflächen waren das Vorhandensein von Vorinformationen, das Alter des Bestandes, bzw. der Termin der Neuanpflanzung sowie die morphologische Exposition des Standortes. Darüber hinaus sollten Standorte sowohl oberstromig als auch unterstromig des Fährdammes Berücksichtigung finden. Es wird davon ausgegangen, dass der

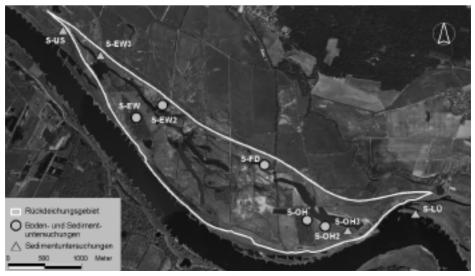


Abb. 1: Lage der Boden- und Sedimentuntersuchungsflächen (Foto: Geobasisdaten: LGB, GeoBasis-DE/LGB, 2011, LVE02/09).

Fährdamm für Stoffeinträge in die Lenzener Rückdeichungsfläche eine besondere Bedeutung hat, da er als bewachsener Damm wie ein Querriegel wirkt und sowohl das Fließgeschehen als auch die Sedimentation von Schwebstoffen stark beeinflusst. Abb. 1 zeigt die Lage der Boden-Monitoringflächen. In Tab. 1 werden die Kriterien zur Standortauswahl zusammengefasst.

Tab. 1: Kriterien zur Standortauswahl für Boden-Monitoringflächen.

Standort	Varinfo	Waldstadium/ Pflanztermin	Morphologische Exposition
Oberholz (OH)	Ja, Schwartz 2001	1996	Plateau
Echwald (EW)	Ja, Schwartz 2001	Klimasstadium	Plateau
Oberholz 2 (OH2)	nein	2004	Plateau
Echwald 2 (EW2)	nein	2008	Senke
Fährdamm (FD)	nein	1995	Senke

An allen Standorten wurden quadratische Boden-Monitoringflächen mit einer Größe von 100 m² eingerichtet. Tab. 2 enthält die Lageparameter und bodentypologische Einordnung der Auwald-Untersuchungsstandorte. Aus den Flächen wurden Mischproben aus 10 Einstichen von 0 bis 10 cm Tiefe hergestellt. Ebenfalls wurden Lagerungsdichte und das Gesamtporenvolumen mit Hilfe von Stechzylindern ermittelt.

Tab. 2: Lageparameter und bodentypologische Einordnung der Auwald-Untersuchungsstandorte / Monitoringflächen.

Standort	Höhe (m NN)	Lage MW (m)	Bodensubtyp	Exposition	Aueniehm (cm)
OH	16,77	0,71	Auengley	Plateau/ Ebene	>150
OH2	16,98	0,92	Auengley	Plateau/ Ebene	160
FD	15,99	0	Auengley	Senice	185
EW	16,90	1	Gley-Vega	Plateau/ Ebene	110
EW2	16,02	0,12	Auen-Nassgley	Senke	>200

Tab. 3 zeigt die Analysenmethoden für Böden und Sedimente auf. Die bodenkundlichen Untersuchungen wurden durch die Messung des hochwassergebundenen Sedimenteintrages ergänzt. Zum Einsatz kamen ASTRO-TURF Sedimentfallen der Größe 30*40 cm, die mit jeweils 4 Parallelen ausgelegt wurden.

Tab. 3: Zusammenstellung der Analysenmethoden.

Parameter	Methode
Bodenart	Trockenslebung des Sandanteils nach nassem Abtrennen der Feinanteile DIN 18123-5 und Pipettanalyse des Feinkoms nach DIN ISO 11277
Trockenrohdichte (Dichte)	DIN ISO 11272
Substanzanteil/Porenanteil	DIN 19883-13
Humus	Über GV-Bestimmung 650 °C
Stickstoff, gesamt	EANYAS K-3005, Kjøldahl-Stickstoff
pH-Wert	DIN 19684 T1
Königewesseraufschluss	DIN ISO 11468
Arsen, Cadmium, Blei, Chrom, Eisen, Kupfer, Mangan, Nickel, Zink	EDIN ISO 11047
Quecksiber	LECO-Feststoffanalyzer, AMA 254

3 Allgemeine bodenkundliche Kennwerte

Die ermittelten bodenkundlichen Kennwerte sind in Tab. 4 zusammengefasst und verdeutlichen die Differenzierung der Standorte.

Standort	Bodenart	<28ym (%)	<2ym (%)	pH	8V (%)	N (%)	9PV (%)	L0 (g/sm²)
OH	tu	51,9	20,0	5,2	10,3	D,7	61.3	0,72
OH2	Lu	60.1	18,0	5,4	13,2	0,8	62,2	0.76
FD	142	54.8	20,5	5.2	10.3	0.6	63.8	0.66
EW	534	32,1	13,3	5,3	9,2	0,3	57,5	1,17
EW2	LIS	712	42.8	4.8	10.9	0.8	69.4	0.86

Tab. 4: Kennwerte der Boden-Monitoringflächen.

Die höchsten Tongehalte mit 43 % wurden in der Fläche Eichwald 2 (EW2) ermittelt. Hier ist auch auf der Grundlage der bodenkundlichen Ansprache – nach der Überflutung mit Stauwasser zu rechnen. EW2 liegt relativ deichnah und tief – nur 0,12 m über dem Mittelwasser. Trotz der hohen Tongehalte und des relativ hohen Humusgehaltes von fast 11% tritt der niedrigste pH-Wert auf. Womöglich ist dies der Oxidation pedogener Sulfide bei der Probenaufbereitung geschuldet. Die Anpflanzung auf dieser Fläche erfolgte 2006, die Krautvegetation ist üppig. Im Gegensatz dazu stellt der Standort Eichwald (EW) die sandigste der untersuchten Monitoringflächen dar. Hier wurde die Bodenart stark lehmiger Sand ermittelt mit einem Tongehalt von 13 %. Dieser Standort weist gleichsam die niedrigsten Humus- und Stickstoffgehalte aus. Diese decken sich gut mit den Befunden von SCHWARTZ (2001). Die höheren Sandanteile schlagen sich auch in dem niedrigsten Gesamtporenvolumen von immerhin noch 57 % sowie der höchsten Lagerungsdichte von 1,2 g/cm³ nieder. Diese Befunde sind zwar nicht deckungsgleich mit denen von SCHWARTZ (2001), jedoch sehr ähnlich, was der natürlichen Heterogenität geschuldet ist. Der Standort am Fährdamm (FD), am tiefsten gelegen und demzufolge am längsten von allen Standorten überflutet, weist die niedrigste Lagerungsdichte auf. Die Anpflanzung erfolgte, wie auch im Oberholz, im Herbst 1996. Am Standort Oberholz (OH) ist dagegen das höchste Porenvolumen der Vergleichsstandorte vorzufinden. Das Gesamtporenvolumen beträgt 68 %, die Lagerungsdichte liegt bei 0,72 g/cm³. Auch diese Parameter sind den Befunden von Schwartz (2001) sehr ähnlich und lassen erahnen, dass eine 10jährige Bodenentwicklung noch nicht ausreicht, um die flächenhafte natürliche Standortvariabilität zu überprägen. Im Gegensatz zum Beginn des Elbe-Ökologie Projektes ist heute an diesem Standort der Kronenschluss erfolgt und die Bodenvegetation ist nur sehr spärlich ausgebildet.

Der Vergleichsstandort **Oberholz 2 (OH2)**, 2 dm höher gelegen und mit einer Anpflanzung u. a. aus Eichen, Weißdorn und Weiden, ist durch den höchsten Humusgehalt und pH-Wert gekennzeichnet. Dabei liegt das pH-Wert-Niveau im mittel-saueren Bereich. Dieser Standort wurde ausgewählt, weil er sich heute bezüglich des Aufwuchses dem Oberholz der Jahre zwischen 1997 und 1999 ähnelt und vom Bodensubstrat her ähnliche Standorteigenschaften vermuten ließ. Die Anpflanzung erfolgte 2004.

4 Königswasserlösliche Metallgehalte der Böden

Die ermittelten Schwermetall- und Arsengehalte der Monitoringflächen sind in Tab. 5 zusammengefasst. Die Analysenergebnisse liegen überwiegend im Bereich der geogenen Hintergrundwerte (KRÜGER ET AL. 1999). Lediglich die Bleigehalte im Oberholz und Eichwald 2 scheinen gegenüber dem geogenen Hintergrund erhöht, ohne kritisch zu sein, wie ein Vergleich mit den Vorsorgewerten der Bundes-Bodenschutz- und Altlastenverordnung zeigt.

Standort	Arsen	Cad- mium	Chrom	Kupfer	Queck- silber	Nickel	Blei	Zink
OH	43	0,7	71	37	0,3	34	84	191
OH2	17	0,5	60	20	0,1	28	38	130
FD	16	0,5	56	22	0,2	26	29	127
EW	3,5	0,3	37	14	0,1	19	5,8	108
EW2	41	0,3	88	31	0,1	41	67	133
V9WLehm*	k.A.	1	60	40	0,5	50	70	150
VSWTon*	k.A.	1,5	100	60	1	70	100	200

Tab. 5: Ergebnisse der Metallanalysen in mg/kg der Monitoringflächen.

5 Hochwasserbedingte Sediment- und Schadstoffeinträge

Der hochwassergebundene Sedimenteintrag kann als Motor der Bodenbildung in Auen betrachtet werden. Mit der Überflutung der Rückdeichungsflächen geht der Eintrag von Schwebstoffen/Sedimenten einher. Die Quantität und Qualität der Sedimente entscheidet dabei, in welchem Ausmaß diese Sedimentation für die Bodenbildung und die bodenkundliche Bewertung von Relevanz ist. Des Weiteren ist der Sedimenteintrag für die Entwicklung der Grünlandvegetation von Bedeutung. Die Lage der Standorte ist Abb. 1 zu entnehmen. Tab. 6 gibt einen Überblick über die Sedimenteinträge und zeigt ausgewählte Parameter bezüglich der Sedimentqualität.

Name	Datum der Bergung	Eintrag (g/m ²⁾	Humus (GV) (%)	pH-Wert (CaCl ₂)	Fraktion < 20 µm (%)	Bodenart
S-LD	30.04.2010	1148	16,7	7,2	58,2	U2
S-CH3	16.04.2010	1631	12,5	7,4	68,4	Us
8-CH2	16.04.2010	452	15,2	7,3	62,0	UI2
S-OH	16.04.2010	1656	11,3	7,3	42,3	Ut3
8-FD	02.06.2010	228	25,0	6,1	41,1	814
8-EW	16.04.2010	184	24,4	8,9	54,0	Ula
S-EW2	14.05.2010	567	18,8	7,3	53,6	Uls
S-EW3	30.04.2010	295	16,7	7,3	40,3	Us
8-US	30.04.2010	12810	2,7	7,3	12,0	842

Tab. 6: Ausgewählte Parameter der Hochflutsedimente vom Frühjahrshochwasser 2010.

Die ermittelten Sedimenteinträge umfassen eine weite Spanne von < 0,2 bis > 12,0 kg/m². Dabei bleibt der größte ermittelte Eintrag von > 12.0 kg/m² auf eine unterstromig der Rückdeichungsfläche gelegene Flutrinne (S-US) beschränkt. Sehr große Sedimenteinträge wurden auch direkt am oberstromigsten Deichschlitz ausgemacht. Dokumentiert wurden frisch abgelagerte Sedimente mit einer Mächtigkeit von 7 cm aus sandigem Material (kein Standort mit Sedimentfallen) (KRÜGER, 2010). An sämtlichen Messpunkten innerhalb der Rückdeichungsfläche wurden dagegen sehr viel geringere Einträge ermittelt. Nur die oberstromig des sogenannten Fährdammes liegenden Probennahmeflächen (S-OH3 und S-OH) weisen noch Sedimenteinträge, vergleichbar mit der Probennahmefläche S-LÜ auf dem Lütkenwischer Werder, auf. Diese Sedimenteinträge liegen in der Größenordnung, wie sie auch in unterschiedlichen Untersuchungsgebieten an der unteren Mittelelbe auftreten (Krüger und Ur-BAN 2009) und stellten sich nach der Überflutung als schleierartiger Überzug der Vegetation dar. Die Sedimenteinträge, mit Ausnahme derjenigen am oberstromigen Deichschlitz, sind zu gering, um die Bodenqualität nachhaltig zu beeinflussen. Dabei ist zu berücksichtigen, dass Böden über eine Tiefe von 10 cm beprobt wurden. Die ermittelten Lagerungsdichten für Böden zwischen 0,65 und 1,2 g/cm³ machen Sedimenteinträge von 6,5 bis 12 kg notwendig, um den Boden nur um einen Zentimeter weiter aufzusedimentieren. D. h. bodenbildungsrelevante Einträge hat es lediglich unterstromig des Rückdeichungsgebietes im Elbevorland sowie direkt unterstromig des östlichsten Deichschlitzes gegeben. Ob es sich bei diesen Ablagerungen ausschließlich um mobilisiertes Elbesediment handelt, muss jedoch bezweifelt werden, da jeweils im oberstromigen Bereich offener Boden, der von Bautätigkeiten herrührte, vorkam.

Die geochemischen Analysen am Hochflutsediment zeigen, dass es sich um relativ feinkörnige und organogene Sedimente handelt. Innerhalb der Rückdeichungsfläche liegt der Anteil an der Fraktion < 20 µm zwischen 40 und 68 %. Das oberstromige "Referenzsediment" vom Lütkenwischer Werder (S-LÜ) weist einen Anteil von 58 % der Fraktion < 20 μm auf und ist am stärksten belastet (Tab. 7). Die Quecksilberkonzentration von knapp 3 mg/kg ist typisch für rezente Elbesedimente (ARGE-ELBE 2007) an der Messstelle Schnackenburg. Die Verminderung der Metallkonzentration an den unterstromigen Standorten kann als Indiz für eine Vermischung des Elbeschwebstoffes mit lokal anstehendem Boden bzw. offen liegendem, unbelastetem Bodenmaterial interpretiert werden. Die teilweise sehr hohen Humusgehalte von 15-25 % sprechen dafür, dass Streu der anstehenden Vegetation einen Teil des Sedimentes ausmacht, ebenso wie Algenwachstum während lang anhaltender Stillwasserphasen. In jedem Fall weisen die Sedimente jedoch höhere Gehalte an Humus auf, als die Böden der Untersuchungsflächen, so dass, ebenso wie bei den pH-Werten, prinzipiell mit einer Verbesserung der Bodenqualität gerechnet werden kann.

HEISE ET AL. (2008) haben herausgearbeitet, dass auch geringe Einträge belasteten Sedimentes ausreichen, um auf Grünlandstandorten die Futtermittelqualität zu beeinträchtigen. Bei Annahme einer 20%igen Verschmutzung der Vegetation durch Überflutung sei eine Sedimentqualität im Bereich des geogenen/ubiquitären Hintergrundwertes eines Schadstoffes, beispielsweise für Quecksilber, von </= 0,5 mg/kg notwendig, um die Futtermittelrichtwerte einzuhalten. Dies scheint besonders kritisch, nicht nur weil die Sedimentqualität überwiegend deutlich höher liegt, sondern auch, weil nach mündlicher Auskunft der Landwirtschaftskammer Niedersachsens der Aufwuchs pro Erntetermin lediglich eine Trockenmasse

Tab. 7: Schwermetall- und Arsengehalte (mg/kg) in Hochflutsedimenten innerhalb und außerhalb der Rückdeichungsfläche Lenzen 2010 im Vergleich zum schwebstoffbürtigen Sediment in Schnackenburg 2007. *außerhalb der Rückdeichungsfläche

	**Arge-Elbe (2007)), schwebstoffbelastetes Sediment	t. Metalle in der Fraktion < 20um
--	--------------------	-----------------------------------	-----------------------------------

Standort	Arsen	Cad- mium	Chrom	Kupfer	Queck- silber	Nickel	Blei	Zink
st0°	62	5,0	54	75	2,8	34,9	121	603
5-OH	47	3,9	61	70	1,0	35,9	92	552
S-CH2	50	3,9	52	68	1,6	37,8	97	544
8-OH3	61	3,2	62	65	1,7	41,3	120	620
SFD	79	2,5	65	82	1,3	49,2	155	751
sew	47	2,6	55	66	1,1	42,6	92	607
S-EW2	49	3,4	50	44	1,5	34	97	480
8-EW3	29	1,4	39	59	0,6	30,9	58	495
8-U8*	19	1,0	42	42	1,2	19,7	37	286
SCH**	42	6,3	91	98	2	57,5	135	1200

von ca. 200 g/m² aufweist, was dem minimalen Sedimenteintrag entspricht. Tab. 7 enthält alle Metall-Analysenergebnisse. Diese werden den medianen Konzentrationen von schwebstoffbürtigen Sedimenten der Arge-Elbe aus dem Jahr 2007 gegenübergestellt, um zu zeigen, dass die Belastungen in der gleichen Größenordnung liegen. Der Vergleich mit den Vorsorgewerten der Bundes-Bodenschutz- und Altlastenverordnung (Tab. 5) verdeutlicht, dass bei anhaltender/ starker Sedimentation auch mit einer nachhaltigen Kontamination der Böden zu rechnen ist.

6 Zusammenfassung und Empfehlungen

Es wurden im Zeitraum von Oktober 2009 bis August 2010 im Rückdeichungsgebiet Lenzen umfangreiche bodenkundliche Untersuchungen durchgeführt. Diese umfassten die Einrichtung von fünf Boden-Monitoringflächen auf unterschiedlich alten Waldstandorten. Diese Standorte befinden sich auf topografisch unterschiedlichem Niveau und sind dem Hochwassergeschehen und dem Sedimenteintrag unterschiedlich ausgesetzt. Diese Standorte wurden bodenkundlich charakterisiert und bezüglich ihrer Schwermetall- und Arsengehalte analysiert, so dass diese Analysen für zukünftige Folgestudien als Referenzwerte zur Verfügung stehen. Während der ersten Hochwasserwelle im Jahr 2010 wurden sieben Hochflutsedimente innerhalb der Rückdeichungsfläche und zwei Hochflutsedimente im Elbevorland gewonnen. Auch diese wurden geochemisch charakterisiert. Es war festzustellen, dass alle Sedimente als kontaminiert zu betrachten sind – wobei die Sedimenteinträge mit wenigen Ausnahmen derartig gering sind, dass nur lokal mit Boden-Qualitätsverschlechterungen zu rechnen ist. Die Sedimenteinträge reichen jedoch aus, um die Qualität der Vegetation zu beeinflussen. Da aus den Untersuchungsbefunden geschlossen werden konnte, dass die Hochflutsedimente mit offen liegendem Boden, z. B. der Deichbaustellen vermischt wurden, wird empfohlen, die Sedimentuntersuchungen zu wiederholen, wenn die Baustellen geschlossen und offene Erde durch Vegetation festgelegt wurde.

Literatur

- ANONYMUS (1999): Bundes- Bodenschutz- und Altlastenverordnung (BBodSchV).
- ARGE-ELBE (2007): Wassergütedaten der Elbe Zahlentafel 2007.
- KRÜGER F., PRANGE A. und E. JANTZEN (1999): Ermittlung geogener Hintergrundwerte an der Mittelelbe und deren Anwendung in der Beurteilung von Unterwassersedimenten. Hamburger Bodenkundliche Arbeiten 44, S. 39-51.
- KRÜGER, F. und B. Urban (2009): Erfassung partikulärer (Schad)stoffeinträge in Auen/Überflutungsflächen der Elbe. In BfG (Hrsg.): Aspekte des Schadstoffmonitorings an Schwebstoffen und Sedimenten in der aquatischen Umwelt. BfG-Veranstaltungen 7/2009.
- KRÜGER, F. (2010): Projekt-Evaluation Bodenkunde. Unveröffentlichter Forschungsbericht im Rahmen des Naturschutzgroßprojektes Lenzener Elbtalaue, 51 S.
- SCHWARTZ, R. (2001): Die Böden der Elbaue bei Lenzen und ihre möglichen Veränderungen nach Rückdeichung. Hamburger Bodenkundliche Arbeiten 48, 391 S.
- HEISE, S., KRÜGER, F., FÖRSTNER, U., BABOROWSKI, M., GÖTZ, R. und B. STACHEL (2008): Bewertung von Risiken durch feststoffgebundene Schadstoffe im Elbeeinzugsgebiet. Erstellt im Auftrag der Hamburg Port Authority (HPA) und cofinanziert durch die FGG-Elbe, 349 S.

Amphibien in Flussauen – Einfluss der Renaturierung der Lenzener Elbtalaue auf die Diversität von Amphibien und die Entwicklung von Amphibienpopulationen

Julian Glos, Jana Behnke, Jannis Feigs, Greta Grunwald, Daniela Kühne, Anne Rottenau, Sylvia Ryz, Universiät Hamburg, Abteilung Tierökologie und Naturschutz

1 Einleitung

Durch die ständigen Überflutungen bildet sich in Auen ein Mosaik verschiedenster Lebensräume, welches als eines der artenreichsten Ökosysteme Mitteleuropas gilt. Gleichzeitig gehören sie zu den meist gefährdeten Ökosystemen weltweit. In Europa sind zum Beispiel 90 % der ehemaligen Flussauen verschwunden oder haben ihre Funktion verloren (FRIESE ET AL. 2000; TOCKNER ET AL. 2006).

Auch an der Elbe bei Lenzen kam es seit Jahrhunderten durch Deichbau zum Verlust der natürlichen Auen mitsamt ihrer Dynamik sowie der Tier- und Pflanzenvielfalt (SCHOLZ ET AL. 2005). Um zu überprüfen, ob durch das Naturschutzgroßprojekt eine Renaturierung bewirkt wird, gilt es, geeignete Modelle anzuwenden. Amphibien stellen aus mehreren Gründen eine gute Möglichkeit der Überprüfung dar (HOPKINS 2007). Sie gelten für Überflutungsflächen, welche ein geringes Maß von Verbindungen aufweisen, oder für temporäre Gewässer ohne Fische als generelle Indikatoren (TOCKNER ET AL. 2006). Hinzu kommt, dass sie verschiedene Nahrungsnischen sowohl im Wasser als auch an Land einnehmen. Sie geben qualitative Informationen über beide Lebensräume. Wesentlich ist ihre Funktion als Modellorganismus auch deshalb, weil die Anzahl an Amphibien global signifikant zurückgeht. Ihre Aussterberate ist so hoch, dass sie als die höchste Aussterberate von Landvertebraten seit den Dinosauriern gilt.

Es finden regelmäßig (bisher 2009 bis 2012) studentische Abschlussarbeiten an Amphibien in der Lenzener Elbtalaue statt (Bachelorarbeiten der Uni Hamburg, Abt. Tierökologie und Naturschutz). Allgemeines Ziel dieser Studien ist es, den Effekt der Renaturierung der Auenlandschaft auf die Diversität von Amphibien und auf die Entwicklung einzelner Zielarten, v. a. die Rotbauchunke (Bombina), zu untersuchen.

Insbesondere soll herausgearbeitet werden, inwiefern sich der Artenreichtum von Amphibien und das Vorkommen einzelner Arten zwischen neu geschaffenen dynamischen und relativ undynamischen Lebensräumen (hinter dem Neudeich) unterscheidet. Es kann eine Prognose über die Auswirkungen des Naturschutzprojektes und der Deichöffnung auf die Amphibiendiversität im Allgemeinen und das Vorkommen der Rotbauchunken im Speziellen erstellt werden.

2 Methoden

Untersuchungszeitraum – Die Untersuchungen wurden jeweils im Frühjahr 2009 bis 2012 während der Hauptaktivitätszeit von Amphibien für etwa drei Wochen pro Jahr durchgeführt. (Greta Grunwald und Jana Behnke (2009), Anne Rottenau und Julia Madloch (2010), Daniela Kühne (2011), Jannis Feigs und Sylvia Ryz (2012)).

Untersuchte Gewässer – Pro Jahr wurden zwischen 15 und 20 verschiedene Laichgewässer von Amphibien untersucht. Diese Gewässer waren über das Gebiet verteilt, sowohl im neu geschaffenen Gebiet zwischen Alt- und Neudeich ("dynamisches Habitat") als auch hinter dem Neudeich ("nicht-dynamisches Habitat"), befanden sich aber meist im östlichen Teil des Rückdeichungsgebietes. Es wurden folgende Typen an Laichgewässern unterschieden:

Qualmwasserzonen (Abb. 1a) – Diese temporären Gewässer entstehen in den Ufergebieten durch den Anstieg des Grundwasserspiegels bei Hochwasser der Elbe, in der Regel liegen sie direkt hinter dem Deich. Sie sind verhältnismäßig flach und erwärmen sich schnell. Durch das überflutete Grünland enthalten sie viel submerse Vegetation. Die Fläche der Qualmwasserzonen hinter dem Neudeich war relativ gering und sie trockneten relativ rasch aus.

Tümpel Trockenrasen (Abb. 1b) – Temporäre, relativ kleine und meist sonnenbeschienene Laichgewässer, die v. a. durch Regen befüllt werden und i. d. R. nicht überflutet werden (Nähe "Eichenwäldchen" = Eichholz).

Brack (Abb. 1c) – Permanente Gewässer, die ursprünglich in Folge eines Deichbruches entstanden (SCHWARTZ und NEBELSIEK 2002). Sie sind bis zu mehreren Metern tief und trocknen nicht aus.

Überflutungsflächen (Abb. 1d) – Bei Hochwasser werden weite Teile des Gebietes zwischen den Deichen überschwemmt, v. a. sammelt sich das Wasser in Mulden des Grünlands, dementsprechend ist auch hier viel submerse Vegetation vorhanden. Die Tiefe der jeweiligen Gewässer kann sehr unterschiedlich sein, bei rückläufigem Wasserstand können sie sehr schnell trocken fallen

Flutrinnen und -ausläufer (Abb. 1e) – Flutrinnen an sich führen viel Wasser und sind relativ tief, die Ausläufer sind jedoch flacher. Auch ist in den Ausläufern mehr submerse Vegetation als in den tieferen Bereichen der Flutrinne zu finden, da Grünland überflutet wird. Flutrinnenausläufer haben in der Regel Trockenzeiten. Untersuchungen konnten nur an den Ausläufern durchgeführt werden, da sich die tieferen Teile der Flutrinne in Bereichen befanden, die nicht betreten werden konnten.

Ausgleichstümpel (Abb. 1f) – Hinter dem Neudeich künstlich angelegte Gewässer, um nach der Schlitzung des alten Deiches erste vom Deich geschützte Gewässer zu gewährleisten.

Amphibienerfassung – Das Vorkommen von Amphibien und der relativen Häufigkeit wurde entlang von Transekten (140 m (2009) und 20 m (2010 bis 2012)) entlang des Ufers erfasst. Pro Jahr und Transekt fanden mindestens vier Begehungen statt (s. a. BEHNKE 2009, ROTTENAU 2010, KÜHNE 2011, FEIGS 2012). Es wurden 4 Erfassungsmethoden benutzt: (1) Visuelles Monitoring (2) Akustisches Monitoring (3) Reusenfänge (Auslegen von 7 bis 10 Kleinfischreusen für je 48 h, nur in 2009 und 2012), (4) Keschern von Kaulquappen.

Ergebnisse und Diskussion 3

3.1 Amphibiendiversität in der Lenzener Elbtalaue

Die Lenzener Elbtalaue beherbergt mindestens zehn Amphibienarten und viele dieser Arten kommen in einer hohen Dichte vor (Tab. 1). Damit umfasst dieses nur etwa 500 ha große Gebiet etwa die Hälfte aller in Deutschland vorkommenden Amphibienarten und die meisten Arten Brandenburgs (=15 Arten; SCHNEEWEIß ET AL. 2004). Die Bedeutung wird noch unterstrichen

Abb. 1: Laichhabitate für Amphibien in der Lenzener Elbtalaue in 2009.
(a) Qualmwasserzone, (b) Tümpel Trockenrasen, (c) Brack, (d) Überflutungsfläche, (e) Flutrinne mit Überschwemmungsflächen, (f) Ausgleichstümpel hinter Neudeich. (Foto: Greta Grunwald 2009)

durch die starke Präsenz von geschützten und gefährdeten Arten, wie den FFH-Arten Rotbauchunke und Kammmolch und den Rote Liste-Arten Knoblauch- und Kreuzkröte sowie Laub- und Moorfrosch.

Die höchsten Individuendichten und die größte Verbreitung zeigten Moor- und Wasserfrösche. Aber auch die stark gefährdete Rotbauchunke und der Laubfrosch konnten mit erstaun-

lich hohen Individuenzahlen und in vielen Gewässern nachgewiesen werden, Kreuz- und Knoblauchkröten dagegen nur vereinzelt. Teichmolche fanden sich in fast allen, Kammmolche hingegen nur in einzelnen Gewässern. Dies deckt sich mit einer Untersuchung zur Folgenabschätzung der Deichrückverlegung (WILKENS ET AL. 2000) in den Frühjahren von 1997 - 1999. Auch hier wiesen Moor-, Wasser- und Laubfrosch sowie Rotbauchunke die höchsten Bestandsgrößen auf. Alle anderen Arten konnten nur vereinzelt nachgewiesen werden.

3.2 Entwicklung seit der Deichschlitzung

Die Deichschlitzung hat zu einer sehr starken Veränderung von Anzahl und Charakter von potentiellen Laichgewässern geführt. Ihre Fläche ist enorm gestiegen. Weite Teile des Gebietes zwischen den Deichen bestehen nun im Frühjahr aus überfluteten Flächen, die relativ flach und strukturreich sind (Abb. 1d, 1e). Qualmwasserzonen, die 2009 amphibienreichsten Gewässer, sind in ihrem Ausmaß hingegen stark zurückgegangen. Sie nehmen heute eine relativ (zu 2009 und vorher) kleine Fläche ein und trocknen schneller aus als früher. Die Eigenschaften anderer Gewässer sind durch die Deichschlitzung deutlich weniger verändert.

Um den Effekt der Renaturierung abschätzen zu können, eignen sich v. a. Absence-Presence Daten und nicht die Häufigkeit der jeweiligen Arten. Die Artenzahlen zeigen keinen negativen Effekt der Renaturierung auf die Amphibiendiversität im Gebiet. Ein statistischer Vergleich der Artenzahlen zwischen Gewässern des Gebietes zwischen Alt- und Neudeich ("dynamisch") und des Gebietes hinter dem Neudeich ("nicht-dynamisch") zeigte keinen signifikanten Unterschied (U-Test, Z=-0,06, p=0,95, n=15; Daten von 2012). Gewässer vor und hinter dem Neudeich und mit unterschiedlichen Eigenschaften (Fläche und Tiefe), werden prinzipiell von einer jeweils unterschiedlichen Artengemeinschaft, mit jedoch vielen gemeinsamen Arten, (Mantel-Test, r=0,27, p<0,01) genutzt. Eine genauere Analyse (FEIGS 2012) zeigt dabei, dass einige Arten, z. B. Laubfrosch, die Gewässer im neu geschaffenen Gebiet generell weniger häufig nutzen als die Gewässer hinter dem Neudeich. Die Rotbauchunken hingegen nutzen sie häufiger.

Es zeigt sich, dass es zur Annahme der durch die Überschwemmungen geprägten Landschaftsstrukturen durch die Amphibien gekommen ist. Angesichts der hohen Sensibilität gegenüber biotischen und abiotischen Faktoren kann man die Reproduktion in einem Mosaik verschiedenster Gewässertypen mit ausgeglichener Biodiversität an Amphibien als erfolgreichen Renaturierungsprozess verstehen. In den neu entstandenen Überschwemmungsflächen, die nun im Frühjahr einen Großteil der Fläche des Gebietes ausmachen, konnten Rotbauchunken, Kreuzkröten, der Wasserfroschkomplex, Moorfrösche, Teichmolche und Laubfrösche gesehen und gefangen werden. Die neuen temporären Gewässer scheinen diesen Arten als geeignete Bruthabitate zu dienen, trotzdem sich diese Gewässer durch eine höhere Wahrscheinlichkeit der Anwesenheit und einer vermutlich höheren Dichte an räuberischen Fischen auszeichnen.

3.3 Effekt der Renaturierung auf die Rotbauchunke (Bombina bombina)

Die Elbniederung weist innerhalb Deutschlands eine dichte Besiedlung der Rotbauchunke auf (Schneeweiß und Günther 1996). Nach Blab (1986) zählen die Rotbauchunken zu den Amphibienarten mit ganzjähriger bzw. nahezu ganzjähriger Gewässerbindung. Rotbauchunken waren im neu geschaffenen, dynamischen Gebiet häufiger als in den Gewässern hinter dem Neu-

Nachgewiesene Arten	2009	2010	2011	2012
Lissahitan vulgaris (Teichmolch)	+	+	+	+
Triburus cristatus (Kammmolch) (a)	+	-	-	+
Bombine bombine (Rotbauchunke)	+	+	+	+
Bufo bufo (Erckröte)	+	*	+	+
Bufo celemite (Kreuzkröte) (b)	+	+	-	+
Pelobetes fuscus (Knobilauchkröte)	+	+	-	+
Rana temporania (Grasfrosch)	+	+	+	+
Rena arvalis (Moortroach)	+	*	+	+
Pelophylax sp. (Wasserfrösche) (c)	+	+	+	+
Hylia arbonea (Laubfrosch)	+	+	+	+

Tab. 1: Amphibienarten in der Lenzener Elbtalaue. (a) In 2010 und 2011 keine Fänge mit Reusen; darum kein Nachweis von T. cristatus; (b) Syn.: Epidalea calamita; (c) Wasserfroschkomplex, bestehend aus P. "esculentus" (= Rana kl. esculenta) und P. ridibundus (= R. ridibunda). Weiterhin bestehen unsichere akustische Nachweise der Wechselkröte, Bufo viridis (Syn.: Pseudepidalea viridis).

deich. Auch andere Naturschutzprojekte beschäftigen sich mit der Wiedervernässung von Auengebieten durch verstärkte Überflutungen und konnten nach langjähriger Entwicklung einen positiven Effekt auf die Dichte der Rotbauchunken feststellen (MÄKERT und ZITSCHKE 2001). So ist anzunehmen, dass sich durch den Wiederanschluss an die natürliche Überflutungsdynamik des Flusses in der rezenten Aue keine negativen Auswirkungen auf die Population feststellen lassen.

4 Fazit

Drei Jahre nach der Deichöffnung lässt sich ein positives, vorläufiges Fazit für die Entwicklung der Amphibienpopulationen ziehen. Das neu geschaffene Auengebiet bietet eine deutliche Erweiterung der Fläche an potentiellen Laichgewässern für Amphibien und dieses Laichhabitat wird weiterhin von allen vorher bekannten Amphibienarten genutzt. Ein langfristiges Monitoring ist aber bei Amphibienpopulationen wichtig, um die hohen natürlichen Populationsschwankungen vieler Arten von den Schwankungen zu unterscheiden, die durch Störungen verursacht werden. Ebenso ist bisher nicht klar, inwiefern an den von verschiedenen Arten genutzten Gewässertypen tatsächlich auch überall eine erfolgreiche Reproduktion stattfindet. Eine wissenschaftliche Begleitung dieses Projektes über mindestens die nächsten fünf Jahre ist daher sehr empfehlenswert.

Danksagung

Wir danken dem LUGV des Landes Brandenburg und der Unteren Naturschutzbehörde des Landkreises Prignitz für die Erteilung der Betretungs- und Fanggenehmigungen, dem Trägerverbund Burg Lenzen und dem Biosphärenreservat Flusslandschaft Elbe - Brandenburg, insbesondere Heike Garbe, Christian Damm, Birgit Felinks und Eckhardt Krüger, für Ihre Unterstützung.

Literatur

- BEHNKE, J. (2009): Habitatnutzungsanalyse der Amphibien in der Lenzener Elbtalaue. Universität Hamburg, Abteilung Tierökologie und Naturschutz, Bachelorarbeit.
- FEIGS, J. T. (2012): Diversitätsmuster von Amphibien in der Lenzener Elbtalaue drei Jahre nach der Deichschlitzung. Universität Hamburg, Abteilung Tierökologie und Naturschutz. Bachelorarbeit.
- FRIESE, K., WITTER, B., MIEHLICH, G. und M. Rode (2000): Stoffhaushalt von Auenökosystemen Böden und Hydrologie, Schadstoffe, Bewertungen. Springer Verlag, Berlin.
- HOPKINS, W. A. (2007): Amphibians as models for studying environmental change. Ilar Journal 48(3): S. 270-277.
- KÜHNE, D. (2011): Diversitätsmuster von Amphibien in Elbtalauen. Universität Hamburg, Abteilung Tierökologie und Naturschutz. Bachelorarbeit.
- MÄKERT, R. und R. ZITSCHKE (2001): Das Wiedervernässungsprojekt in der nordwestlichen Leipziger Aue. Zeitschrift für Feldherpetologie, Amphibien in Auen, Band 8.: 5-14.
- ROTTENAU, A. (2010): Habitatnutzungsanalysen der Amphibien in der Lenzener Elbtalaue nach der Deichöffnung. Universität Hamburg, Abteilung Tierökologie und Naturschutz. Bachelorarbeit.
- Ryz, S. (2012): Habitatwahl der Rotbauchunke (Bombina bombina) in den Lenzener Elbtalauen. Universität Hamburg, Abteilung Tierökologie und Naturschutz. Bachelorarbeit.
- Schneeweiß, N. und R. Günther (1996): Rotbauchunke *Bombina bombina*. In Günther; R. Die Amphibien und Reptilien Deutschlands. Jena, Gustav Fischer Verlag: 215 232.
- SCHNEEWEIß, N., KRONE, A. und R. BAIER (2004): Rote Listen und Artenlisten der Lurche *(Amphibia)* und Kriechtiere *(Reptilia)* des Landes Brandenburg. Naturschutz und Landschaftspflege in Brandenburg 13.
- SCHOLZ, M., SCHWARTZ, R. und M. WEBER (2005): Flusslandschaft Elbe Entwicklung und heutiger Zustand. In SCHOLZ, M., STAB, S., DZIOCK, F. und K. HENLE (Hrsg.). Lebensräume der Elbe und ihrer Auen – Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee Verlag, Berlin: S. 5-25.
- SCHWARTZ, R. und A. NEBELSIEK (2002). Die Elbaue eine durch Menschenhand geprägte Naturlandschaft. Leibnitz-Institut für Gewässerökologie und Binnenfischerei, Berlin: S. 4-8.
- TOCKNER, K., Klaus, I., BAUMGARTNER, C. und J. V. WARD (2006): Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy). Hydrobiologia 565: S. 121-133.

Jochen Purps, Büro für regionale Entwicklung und ökologische Planungen, Bad Wilsnack

1 Einleitung

Im Biosphärenreservat Flusslandschaft Elbe-Brandenburg wird in der Lenzener Elbtalaue im Gebiet der Deichrückverlegung seit Mitte der 1990er Jahre auf einer Fläche von über 300 ha sukzessive wechselfeuchtes Grünland in Hartholz- und Weichholzauwälder überführt (Neuschulz und Lile 1997). Die Maßnahmen standen im Zentrum von drei größeren Projekten mit folgenden Zeitphasen: EU-LIFE Projekt Brandenburger Elbtalaue 1994-1998, BMBF-Forschungsvorhaben 1996-2000 und Naturschutzgroßprojekt (NGP) Lenzener Elbtalaue 2002-2011 (Purps et al. 2004).

An dieser Stelle werden ausgewählte Ergebnisse der Evaluation der Auwaldneuanlagen in 2009 – dem Jahr der Altdeichschlitzung – berichtet (erstes Hochwasser in 2010). Die Untersuchungen fanden im Rahmen der Evaluation der Naturschutzmaßnahmen im Naturschutzgroßprojekt Lenzener Elbtalaue statt (PURPS 2010) und galten folgenden Fragestellungen:

- Welchen Flächenumfang weisen die über eine Periode von über 12 Jahren angelegten Auwaldneuanlagen auf?
- Wie ist der aktuelle Zustand, welche Form der Auwaldentwicklung erscheint besonders effizient?
- Welche Hemmfaktoren haben die Entwicklung beeinflusst?
- Welchen Umfang hat die spontane Auwaldsukzession?
- Welche Vorschläge für weitere Maßnahmen ergeben sich aus den Ergebnissen?

2 Das Deichrückverlegungsgebiet und dort umgesetzte Maßnahmen

Aus dem BMBF-Forschungsprojekt liegen für das Gebiet umfangreiche Daten zu den biotischen und abiotischen Parametern vor (NEUSCHULZ ET AL. 1999). Nach SCHWARTZ (2001) herrschen in der Deichrückverlegungsfläche hydromorphe Böden vor, die von hoch anstehenden Grundwasserständen geprägt werden. Es handelt sich überwiegend um Auengleye mit mehreren Untertypen, in denen bereits in den obersten vier Dezimetern Grund- und/oder Stauwassermerkmale auftreten. Die Geländeoberfläche liegt im Durchschnitt im Rückverlegungsgebiet weniger als 1 m über der Mittelwasserlinie. Das Mikrorelief weist auentypische Senken und Mulden auf. Die Auenlehmdeckschicht ist im Mittel 1,5 m mächtig und besitzt hohe Anteile von Ton und Schluff (nur geringe Sandanteile). Trotz der Grundwassernähe können die Böden oberflächlich bei niedrigem Elbwasserstand und Niederschlagsarmut stark austrocknen.

Bis 2006/2007 wurde der Wasserhaushalt neben den auentypischen Schwankungen des Elbwasserstandes außerdem vom Einstau der Löcknitz mit Meliorationsgräben geprägt. Nach Bau des rückverlegten Deiches unterliegt das Gebiet nach einer Übergangsperiode (2007/2008) ab 2009 nur noch dem freien Ein- und Ausstrom von Elbwasser.

Die Entwicklung des Auwaldes erfolgte bis 2009 im Schutz des Altdeiches und seit 2010 mit spontan auftretenden Hochwasserereignissen (abhängig von den Abflüssen in der Elbe). Ziel ist die Entwicklung von Auwaldökosystemen (FFH-Lebensraumtypen 91E0 und 91F0) auf 300 ha. Da Mitte der 1990er Jahre kaum Erfahrungen zur Neuanlage von Auenwäldern vorlagen, sind eine Vielzahl von Varianten – angefangen von Naturverjüngung bis zu eher konventionellen Aufforstungsverfahren – mit einer Vielzahl von Mischungsvarianten erprobt worden. Die Begründung der Auwälder erfolgte als Initialisierung über Pflanzmaßnahmen in geringen Pflanzdichten. Während 1995/96 noch mit über 3.000 Pflanzen/ha gearbeitet wurde, wurden später nur noch 1.500-1.000 Pflanzen/ha verwendet. Daneben sind Flächen für natürliche Gehölzsukzession vorgesehen. Das Vermehrungsgut der Baum- und Straucharten ist standortheimisch und stammt aus der Elbtalaue. Nachdem in der ersten Phase (EU-LIFE-Projekt bis 1998) sowohl Reihen- wie Kreisverbände gepflanzt wurden, erfolgte die Pflanzung im Naturschutzgroßprojekt ab 2004 nur in Kreisverbänden (Trupppflanzungen mit 20 – 30 m Durchmesser).

3 **Methodisches Vorgehen**

3.1 Erfasste Parameter

Die Evaluation erfolgte auf zwei Untersuchungsebenen. Auf Gebietsebene wurden alle Flächen mit Gehölzen erfasst und nach dem, im Folgenden dargestellten, Verfahren bewertet. Als Bezugsflächen dienen ehemalige Pflanzflächen und andere mittels Nutzungsart und/oder Vegetationsgrenzen gut abgrenzbare Flächen. Die Abgrenzung der Gehölzflächen im Geographischen Informationssystem stellte Katharina Nabel aus der parallel durchgeführten Vegetationstypenkartierung zu Verfügung. Die Pflanzendichte wurde durch Auszählen der Gehölze in den Bezugsflächen (gesamte Fläche oder abgrenzbare repräsentative Teile) ermittelt.

Auf der Ebene ausgewählter Pflanzflächen wurden u. a. die Flächen des Naturschutzgroßprojektes (Anlage 2004-2007) untersucht. Auf Einzelgehölzbasis erfolgte eine Inventur (Höhe, Vitalität, Wurzelhalsdurchmesser, Wildverbiss) auf 17 Pflanzflächen in 48 repräsentativen Probekreisen (= "Pflanzkreise"). Damit sind 8.300 individuelle Pflanzorte untersucht worden, was ca. 7 % aller in diesem Zeitraum gepflanzten Gehölze entspricht.

Der Umfang und die Qualität der spontanen Gehölzsukzession ist auf ausgewählten Probeflächen im Gebiet ermittelt worden, die seit mehreren Jahren nutzungsfrei sind. Für die Beurteilung der Rolle der Gehölzsukzession wurden zudem weitere Geländebeobachtungen aus dem gesamten Gebiet herangezogen.

3.2 Bewertungsverfahren

Ziel der Evaluation ist die Einschätzung, wie erfolgreich die Maßnahmen zur Auwaldneuanlage gewesen sind. Dies erfordert einen Bewertungsrahmen. Operationale Werte aus den Planungsvorgaben des Projekts, hier der Pflege- und Entwicklungsplan des Naturschutzgroßprojektes, oder Standardwerte aus vergleichbaren Untersuchungen lagen nicht vor. Aufgrund der langen Entwicklungsphase von Waldökosystemen ist die Evaluation bezogen auf den Zielbiotoptyp "Auwald" auf eine Potenzialbewertung beschränkt. Es kann also nur die Auwaldinitialisierung hinsichtlich ihres Erfolges bewertet werden.

Da die "Initialisierungsflächen" in den ältesten Stadien erst das Stangenholzalter erreicht haben, war die Einbeziehung der Bodenvegetation in die Bewertung mit Beurteilung der Hemerobie (z.B. GLAESER 2005), bzw. ein Vergleich mit Auwald-Restbeständen an der Unteren Mittelelbe (HÄRDTLE ET AL. 1996) nicht sinnvoll. Es dominieren je nach Kleinstandort Reliktarten der landwirtschaftlichen Nutzung (z. B. Elymus repens, Cirsium arvense, Deschampsia cespitosa) und Arten der Röhrichte (*Phragmitetea*), denen Arten der Wald-Innensäume (*Geo-Alliarion*) beigemischt sind.

Für die Bewertung wurde daher die aktuelle Gehölzdichte (N/ha) als Hauptparameter ausgewählt. Referenzwerte können aus Naturwäldern abgeleitet werden. So wachsen im *Querceto-Ulmetum* an der Mittleren Elbe insgesamt 313 – 621 Gehölze/ha, wobei in der Oberschicht 100 – 224 Bäume/ha verzeichnet wurden (PATZAK 2004). KORPEL (1995) gibt für das *Ulmeto-Fraxine-tum carpineum* in den March/Thaja-Auen eine Gehölzdichte von 216/ha an. Während diese Angaben als "Obergrenzen" des Zielzustandes reifer Ökosysteme anzusehen sind, die sich in ein bis zwei Waldgenerationen einstellen sollten, können für eine erfolgreiche "Initalisierung" geringere Mindestdichten zu Grunde gelegt werden. Als Zielzustand wird für eine erfolgreiche Initialisierung einer Auwaldentwicklung angenommen, dass 50 – 100 Gehölze/ha das Baumholzalter (perspektivisch um das Jahr 2050) erreichen. Diese Dichte entspricht einem sehr locker aufgebauten parkartigen Waldbild, vergleichbar mit dem Lenzener Eichenwäldchen (= Eichholz), dem letzten alten Auwaldrest im Gebiet.

Auf die Bewertung der Gehölzdiversität (z.B. Baum/Strauchverhältnis, vgl. HOFMANN ET AL. 2005) wurde verzichtet, da alle Initialisierungen grundsätzlich mit mehreren Baumarten und einem hohem Strauchanteil ausgeführt wurden.

Hinsichtlich der Höhenentwicklung bzw. Durchmesserentwicklung wurden jüngere und ältere Auwaldinitialisierungen getrennt bewertet und diesen eine unterschiedliche Sollzahl bei der Stammzahlhaltung zugeordnet.

4 Ergebnisse

4. 1 Evaluation der Auwaldneuanlagen auf Gebietsebene nach Flächenumfang und Gehölzdichte

Innerhalb des Deichrückverlegungsgebietes findet auf 161,04 ha eine Gehölzentwicklung statt, auf weiteren 19,25 ha wachsen Gehölze in der nördlich des Neudeiches angrenzenden Oualmwasserzone auf.

Unterschieden werden im Folgenden die Standorte der Hartholz- und Weichholzaue sowie die Übergangszone ("Tiefe Hartholzaue"). Die Topographie des Gebietes mit einem hohen Flächenanteil in Höhenlagen von nur wenigen Dezimetern über der Mittelwasserlinie sorgen für einen hohen Anteil dieser Übergangszone zwischen potenzieller Hartholz- und Weichholzaue. Hinsichtlich der Abgrenzung der Weichholz- und Hartholzaue bleiben erhebliche Unsicherheiten angesichts fehlender Vergleichsmöglichkeiten an der Unteren Mittelebe. Eine genauere Zuordnung wird erst nach mehrjähriger Beobachtung der Gehölzetablierung im Projektgebiet möglich sein (vgl. Henrichfreise 1996). Als untere Grenze der Hartholzaue wird eine mittlere Überflutungsdauer von etwa 35 d/Jahr in der Vegetationszeit angenommen, was etwa einem Wert von 0,4 m über Mittelwasser entspricht (näheres s. Purps 2010).

Die Auwaldneuanlagen (Flächen mit Gehölzalter bis 20 Jahren) sind wie folgt bewertet worden:

- Ältere Auwaldneuanlagen (Anlage vor Beginn NGP bis 2003):
 - gute Prognose bei mindestens 100 Gehölzen/ha
 - mittlere Prognose bei unter 100 Gehölzen/ha
- Jüngere Auwaldneuanlagen (ab 2004, NGP):
 - gute Prognose bei über 500 Gehölzen/ha
 - mittlere Prognose bei 200 500 Gehölzen/ha
 - unsichere Prognose bei unter 200 Gehölzen/ha

Ältere Gehölzvorkommen (älter als 20 Jahre) befinden sich auf einer Fläche von 9,54 ha (Lenzener Eichenwald sowie ältere "Feldgehölze"/Heckenstreifen, Gehölze entlang Fährdamm). Der geringe Umfang belegt die Gehölzarmut vor Projektbeginn.

Die älteren Auenwaldneuanlagen wurden vor allem im EU-LIFE-Projekt "Brandenburgische Elbtalaue" in den Jahren 1996–1998 gepflanzt. Selten sind die Gehölzbestände horizontal geschlossen. Es überwiegen kleinflächig variierende Pflanzmuster aus Trupp- bis Gruppenpflanzungen. Flächen mit guter Entwicklung mit Stammzahlen von über 100 Gehölzen/ha sind in einem Umfang von 38,82 ha auf Standorten der Hartholzaue und mit 9,50 ha in der Übergangszone zwischen Hart- und Weichholzaue vorhanden. Geringere Stammzahlen zwischen 50–100 Gehölzen/ha wurden auf 15,51 ha im Bereich der Hartholzaue und auf 14,72 ha in der Übergangszone zwischen Hart- und Weichholzaue angetroffen. Angesichts des derzeit (noch?) sehr geringen Vorkommens von natürlicher Gehölzverjüngung und weiterer vorhersehbarer Abgänge weisen diese Bestände nur einen mittleren Prognosestatus auf. Ihre aktuelle Dichte ist bereits auf Werte der Zieldichte von 50 bis 100 Gehölzen/ha (angestrebt für das Jahr 2050) gesunken. Ob diese Initialisierungen letztlich als erfolgreich bewertet werden können, kann erst zu einem späteren Zeitpunkt entschieden werden.

Die jüngsten Auwaldinitialisierungsflächen, angelegt zwischen 2004 und 2009, umfassen eine Fläche von 71,96 ha im Deichvorland und 19,25 ha in der Qualmwasserzone (Deichhinterland).

Die Flächen mit einer guten Prognose nehmen 26,12 ha ein, die Flächen mit einer mittleren Prognose 25,67 ha und die Flächen mit einer unsicheren Prognose 20,17 ha. Auffallend ist, dass der Anteil tief liegender Standorte größer ist als bei den älteren Auwaldneuanlagen.

4.2 Inventur individueller Wachstumsparameter auf 17 Maßnahmeflächen des Naturschutzgroßprojektes

Untersucht wurden 48 Pflanzkreise in 17 verschiedenen Pflanzflächen des Naturschutzgroßprojektes (Pflanzung in den Jahren 2004 bis 2007). Bei den untersuchten Pflanzkreisen mit einem Durchmesser von 30 m handelt es sich um Pflanztrupps mit, je nach verwendetem Schema, 136 oder 176 Pflanzen. Die wichtigsten Ergebnisse der Untersuchung sind: Das festgestellte Anwuchsprozent aller Pflanzen aller vier untersuchten Pflanzjahrgänge beträgt 42 %. Die höchsten Raten weisen die Pflanzungen aus dem Jahr 2006 mit 47 % auf, die geringsten die Pflanzungen aus dem Jahr 2007 mit 35 %.

Im artenspezifischen Vergleich weisen die Ulmen (*Ulmus laevis, U. minor*) mit 59 % bzw. 49 % überdurchschnittliche Anwuchsraten auf, was auch schon bei älteren Pflanzungen zu beobachten war (vgl. auch Beitrag von TIMPE und FELINKS in diesem Band). Auch die Anwuchsrate der

Stiel-Eiche (*Quercus robur*) liegt mit 44 % über dem Durchschnitt, dagegen weist die Esche (*Fraxinus excelsior*) mit 34 % einen unterdurchschnittlichen Anwuchs auf. Nahezu fast völlig ausgefallen sind die Schwarz-Pappeln (*Populus nigra*). Die mittels Steckhölzern vermehrten Weiden (*Salix spec.*) weisen dagegen überdurchschnittlich hohe Anwuchsraten auf.

Die Jungpflanzen zeigen frühestens im dritten Jahr nach der Pflanzung einen deutlichen Höhenzuwachs. Ursachen sind neben dem "Pflanzschock" die in der Elbtalaue regelmäßig auftretenden Spätfröste, die zu einem längerem "Verharren" der Pflanzen in Bodennähe führen. Die Eiche zeigte ab dem dritten Standjahr einen deutlichen Dickenzuwachs, ein merklicher Höhenzuwachs erfolgte jedoch erst ab dem vierten Standjahr.

Jahr der Pflanzung	Nummer der Fläche	Gehölzdichte bei Pflanzung	Aktuelle Gehölzdichte	Prognose der Gehölzdichte	Anwuchsrate	Mittlere Höhe [cm]
2004	14	1547/ha	S22/ha	388/ha	34 %	140
2004	18	1604/ha	902/ha	848/ha	56 %	198
2004	19	1652/ha	657/ha.	519/ha	40 %	95
2005	3-1	1390/ha	387/ha.	263/ha	25 %	115
2005	13	1594/ha	444/ha	342/ha	28 %	96
2005	15	1521/ha	181/ha	112/ha	12%	70
2005	16	1489/ha	993/ha.	814/ha	67 %	170
2008	6	1316/ha	364/ha	186/ha	28 %	90
2008	7	1526/ha	650/ha	533/ha	43 %	100
2006	10	1624/ha	923/ha	701/ha	76 %	105
2006	11-1	1445/ha	369/ha	240/ha	26 %	90
2008	23	1511/ha	1254/ha	1040/ha	83 %	110
2007	Θ	1023/ha	429/ha	273/ha	45 %	60
2007	9	998/ha	230/ha	122/ha	23 %	96
2007	11-2	1039/hs	288/ha	200/ha	28 %	120
2007	24	1012/ha	472/ha	179/ha	47 %	50
2007	25	977/ha	543/ha	81/ha	55 %	50

Neben dem artspezifischen Vergleich wurden die erhobenen Werte aus den Probekreisen für einen Vergleich der Pflanzflächen untereinander genutzt. Dazu wurden die Werte aus allen Pflanzkreisen der jeweiligen Fläche zusammengeführt. Ermittelt wurden so u. a. die aktuelle Pflanzendichte, die mittlere Höhe der Gehölze und die flächenspezifische Anwuchsrate. Unter Berücksichtigung der Vitalität ist eine Prognose der Stammzahlentwicklung der untersuchten 17 Maßnahmeflächen erstellt worden, um wahrscheinliche, kurzfristig eintretende Rückgänge der Pflanzendichten berücksichtigen zu können (Tab. 1). Es zeigt sich, dass auf mehreren Flächen, gehäuft im Jahrgang 2007, zukünftig nur noch relativ geringe Pflanzendichten zu erwarten sind.

4.3 Spontane Gehölzsukzession

Dornenbewehrte Sträucher (*Crataegus spec.*, *Prunus spinosa*, *Rosa spec.*), zeigen auf einigen älteren Pflanzflächen aus den Jahren 1996ff. stellenweise eine Tendenz zur Entwicklung lockerer Gebüsche. Spontane Verjüngung von Stiel-Eiche und Flatter- bzw. Feld-Ulme konnten nur in Einzelexemplaren – meist an Sonderstandorten wie Grabenböschungen oder an Rändern vorhandener Gehölze als Säume – beobachtet werden. Auf "Normalstandorten" im aufgelassenen Grünland (ehemaliger "Schweineversuch", Freiflächen innerhalb von Auwaldneuanlagen) fand sich auch nach über 12-jährigem Brachestadium praktisch keine spontane Verjüngung der Hauptbaumarten. Entlang der Ufer der Flutmulden entwickeln sich spontan Weidengebüsche mit vereinzelten Pappelvorkommen. Ursachen für die festgestellten Defizite werden von Purps (2010) diskutiert, wesentliche Ursachen sind das Fehlen von Altbäumen als Samenspender, Verbiss (Mäuse und Rehe) und dichter Aufwuchs krautiger Pflanzen.

5 Diskussion

Der festgestellte Gesamtanwuchs der jüngeren Auwaldneuanlagen liegt mit 42 % erheblich unter der Anwuchsrate der ersten Auwaldgeneration, PATZ ET AL. (2000) stellten im Jahr 1999 einen Anwuchs von 85 % fest. Pflanzenherkunft und Pflanzverfahren (größtenteils mit Lochbohrer) sind vergleichbar. Die Hauptursache für die erheblichen Unterschiede ist in den Witterungsverläufen in den auf das Pflanzjahr folgenden Anwuchsperioden zu suchen. PATZ ET AL. (2000) haben das Auftreten von Trockenstress im Gebiet belegt. In den ersten Jahren nach der Pflanzung (ohne größere Wurzelmasse) sind Gehölze wesentlich gefährdeter als zu einem späteren Zeitpunkt. Nach dem "Jahrhunderttrockenjahr" 2003 war auch das Jahr 2008 von langen niederschlagsfreien Perioden und niedrigem Elbwasserstand während des Frühjahrs und Sommers geprägt.

Ein weiterer wichtiger Hemmfaktor ist der Wildverbiss. Von 1991 bis 2009 sind über eine Länge von über 40 km Verbissschutzzäune errichtet worden. Die erforderlichen Standzeiten der Zäune sind mehr als fünf Jahre, weil eine ausreichende Höhe erst nach 6 bis 9 Jahren erreicht wird. Die Funktionstüchtigkeit der Zaunanlagen war sehr unterschiedlich. Teilweise war sie über die gesamte Standzeit gewährleistet, teilweise waren bereits nach einem Jahr Rehe in die Pflanzungen eingedrungen. Problematisch waren grundsätzlich Pflanzungen mit einer Fläche von über 2 ha. Der Kontrollaufwand für die Wildschutzzäune ist unterschätzt worden. Im Ergebnis sind auf mehreren Flächen erhebliche Schäden durch Rehe entstanden. Resultat ist ein verzögerter Höhenwuchs, der mit einem Absterben der verbissenen Pflanze einhergeht, wenn diese noch kein ausreichendes Wurzelwerk etabliert hat.

Neben praktischen Empfehlungen (Zaunflächen kleiner 2 ha, Wildwechsel belassen, regelmäßige Zaunkontrollen einplanen, kein Bau von "Wildschweinklappen" bei Pflanzungen auf Grünland) zeigt das Projekt auch, dass bei Vorhaben dieser Größenordnung ein gezieltes Wildtiermanagement (Analyse des Raumnutzungsverhaltens) erfolgen sollte. Letztlich sind Zäune unverzichtbar, sie reichen allein jedoch nicht aus, um eine Größenordnung von 150 ha Fläche mehrjährig frei von Wildeinfluss zu halten.

Aus rückblickender Sicht war die Absenkung der Pflanzenzahlen bei der Pflanzung von 1.500/ha auf 1.000 Stück/ha zu optimistisch hinsichtlich des Anwuchserfolges. Die Auwaldinitialisierungen müssen nicht nur "gute" Jahre mit günstigen Witterungsverläufen, sondern

auch kritische Jahre mit höheren Absterberaten überstehen und mit ausreichend Pflanzen in die Dickungs- und Stangenholzphase einwachsen.

Auf etwa 60 ha ist die Auwaldentwicklung im Deichrückverlegungsgebiet gesichert, auf ca. 120 ha bestehen unterschiedlich stammzahlreiche, hinsichtlich der Gehölzarten gut gemischte junge Auwaldinitialisierungsflächen im Jungwuchs- und Jungbestandsalter. Diese Bestände bilden die Ausgangslage für die weitere Entwicklung der Auwälder. Im Zeithorizont bis 2050 ist hier eine sehr weitständige – parkartige – Entwicklung wahrscheinlicher als die Bildung von geschlossenen Auwäldern.

Danksagung

Frau Katharina Nabel danke ich für das freundliche Überlassen von Kartierungsergebnissen aus dem Projektgebiet.

Literatur

- GLAESER, J. (2005): Untersuchungen zur historischen Entwicklung und Vegetation mitteldeutscher Auenwälder. Dissertation, TU Dresden.
- HÄRDTLE, W., BRACHT, H. und C. HOBOHM (1996): Vegetation und Erhaltungszustand von Hartholzauen (Querco-Ulmetum Issl. 1924) im Mittelelbegebiet zwischen Lauenburg und Havelberg. Tuexenia 16: S. 25-38.
- HENRICHFREISE, A. (1996): Uferwälder und Wasserhaushalt der Mittelelbe in Gefahr. Natur und Landschaft 71 (6): S. 246-248.
- HOFMANN, G., JENSSEN, M., POMMER, U., TREICHEL, D. und R. BURYN (2005): Auenwälder und Leitbild einer Auenwald-Initialisierung im Nationalpark Unteres Odertal. Beitr. Forstwirtschaft u. Landschaftsökol. 39 (2): S. 49-71.
- KORPEL, S. (1995): Die Urwälder der Westkarpaten.
- NEUSCHULZ, F. und S. LILJE (1997): Auenschutz und Rückentwicklung von Auwald in der brandenburgischen Elbtalaue. Laufener Seminarbeitr. 1/97: S. 125 136.
- NEUSCHULZ, F., PURPS, J. und M. HAPE (1999): Auenregeneration durch Deichrückverlegung Übersicht über Vorgehensweise und Zwischenergebnisse eines Verbundvorhabens. Auenreport / Beiträge aus dem Biosphärenreservat Flusslandschaft Elbe, Sonderband 1: S. 6-14.
- Patz, G., Löffler, S. und R. Kätzel (2000): Verbundvorhaben "Auenregeneration durch Deichrückverlegung" (FKZ 0339571) Endbericht Teilprojekt Forstwirtschaft. Eberswalde, 56 S. + Anhang.
- PATZAK, U. (2004): Struktur der Hartholzauenwälder im Mittelelbegebiet. Veröffentlichungen der LPR Landschaftsplanung Dr. Reichhoff GmbH 2: S. 55-91.
- Purps, J., Damm, C. und F. Neuschulz (2004): Naturschutzgroßprojekt Lenzener Elbtalaue, Brandenburg Auenregeneration durch Deichrückverlegung an der Elbe. Natur und Landschaft 79 (9/10): S. 408-415.
- PURPS, J. (2010): Bericht zur Evaluation des Erfolges der Auwaldinitialisierungen im Deichrückverlegungsgebiet Lenzen im Rahmen des Naturschutzgroßprojektes Lenzener Elbtalaue. Gutachten im Auftrag des Trägerverbund Lenzen.
- SCHWARTZ, R. (2001): Die Böden der Elbtalaue bei Lenzen und ihre möglichen Veränderungen nach Rückdeichung. Hamburger Bodenkundliche Arbeiten 48, 391 S.

Erfolgskontrolle ausgewählter Initialpflanzungen in der Lenzener Elbtalaue

Christian Timpe, Birgit Felinks Hochschule Anhalt, Fachbereich Landwirtschaft, Ökotrophologie und Landschaftsentwicklung

1 Einleitung

Ein übergeordnetes Ziel der Deichrückverlegung in der Lenzener Elbtalaue ist die Entwicklung von naturnahen Auenwaldstrukturen auf ca. 300 ha (Purps 1999). Dazu wurden im Zeitraum von 1992 bis 2008 auf ca. 190 ha Initialpflanzungen durchgeführt. Zwei Jahre nach Schlitzung des Altdeiches wurden zwei Auenwaldinitialflächen detailliert analysiert, die durch traditionelle Reihenpflanzung bzw. Trupp-Pflanzung im Herbst 1996 auf zuvor als Grünland genutzten Flächen begründet wurden.

In einem ersten Schritt wurden die Etablierungsraten und die aktuelle Vitalität der verschiedenen Gehölzarten ermittelt. Anschließend wurden durch Vergleich der beiden Pflanzflächen Rückschlüsse gezogen, welchen Beitrag die jeweiligen Konzepte in Hinblick auf die Begründung von naturnahen Auenwäldern leisten.

2 Methodik

2.1 Untersuchungsgebiet

Die ca. 9,3 ha große Fläche "Oberholz" liegt ca. 0,7 m bis 1,8 m über der Mittelwasserlinie der Elbe und ist somit der Hartholzaue zuzuordnen (Purps 2010). Nachdem mit einem Bodenmeißel Pflanzreihen angelegt wurden, erfolgte die Pflanzung anschließend mit Hilfe eines Pflanzlochbohrers. Insgesamt wurden 72 Reihen mit einer Länge zwischen 410 m und 450 m in Nord-Süd-Richtung angelegt, wobei "durchgehende" Reihen mit "versetzten" Reihen wechseln (SEIFERT ET AL. 1996). Die "durchgehenden" Reihen wurden mit Stiel-Eiche, Flatter-Ulme oder Hainbuche bepflanzt. In den "versetzten" Reihen wurden weitere Arten, wie z. B. Schwarz-Erle, Silber-Weide oder Korb-Weide eingebracht. Der Abstand beträgt ca. 1 m innerhalb und zumeist ca. 2 m zwischen den Reihen.

Die ebenfalls 9,3 ha große Fläche "Drei Eichen" liegt zwischen 1 m und 2,5 m über dem Mittelwasserstand der Elbe und befindet sich ebenfalls im Höhenbereich der Hartholzaue. Auf der Fläche wurden überwiegend Pflanztrupps angelegt. Gemeine Esche und Flatter-Ulme wurden in Trupps von ca. 30–100 Individuen, die Stiel-Eiche in Trupps von ca. 50 Individuen gepflanzt. 49 von 69 Eichentrupps wurden als Schutz vor Verbiss und Hochwasserschäden mit bewehrten Sträuchern wie Weißdorn, Schlehe oder Hunds-Rose ummantelt.

2.3 Datenerfassung und Auswertung

Die Geländeerfassungen erfolgten im Juni und Juli 2011. Für alle Individuen wurden die Gehölzart, die Höhe (m) und die Vitalität erfasst (Tab. 1).

Die Vitalitätsklasse 5 wurde nur auf der Fläche "Oberholz" vergeben. Auf der Fläche "Drei Eichen" konnten die seit der Pflanzung abgestorbenen Gehölze nicht quantifiziert werden, da kein Pflanzplan zur Verfügung stand. Somit dient die Vitalitätsklasse 5 zur Ermittlung der Eta-

blierungsraten, die Klassen 1 bis 4 zur Beschreibung der aktuellen Vitalität.

Als Grundlage für die Erfassung auf der Fläche "Oberholz" diente die Bestandaufnahme von SEIFERT ET AL. (1996). Auf der Fläche "Drei Eichen" wurden die Pflanztrupps im mobilen GIS als Polygone auf einem Luftbild eingezeichnet.

Vitalitätsklasse Bezeichnung		Beschreibung				
1	vital	kein bis geringer Blattverlust (0 – 10 %)				
2	schwach geschädigt	Blattverlust 10 = 33 %				
3	geschädigt	Biatverlust 33 – 68 %				
4	stark geschädigt	Blattvertust > 68 %				
6	abgestorben	abgestorben / Pflanze nicht mehr vorhanden				

3 Ergebnisse

Die Fläche "Oberholz" zeichnet sich 15 Jahre nach der Pflanzung als überwiegend geschlossener Bestand mit nur kleineren Lücken aus. Insgesamt wurden hier 28.147 Individuen aus 12 Arten gepflanzt. Den größten Anteil nehmen Stiel-Eiche (13.690), Flatter-Ulme (5.015), Hainbuche (3.800), Silber-Weide (2.027) und Schwarz-Erle (1.447) ein (Abb. 1). Davon konnten sich 14.190 (48 %) Individuen etablieren. Die höchste Etablierungsrate hat Flatter-Ulme mit 90 %, gefolgt von Feld-Ahorn mit 77 % und Silber-Weide mit 71 %. Die am häufigsten gepflanzte Stiel-Eiche konnte sich nur mit 40 % etablieren. Die geringsten Etablierungsraten weisen Schwarz-Erle (33 %), Hainbuche (32 %) und Korb-Weide (26 %) auf.

90 % der Silber-Weide und über 80 % der Fahl-Weide und Korb-Weide fallen in die Vitalitätsklassen 1 und 2 (Abb. 2). Auch Feld-Ahorn und Flatter-Ulme weisen zu 80 % bzw. 74 % keine oder nur geringe Schäden auf. In ihrer Vitalität deutlich beeinträchtigt sind Stiel-Eiche, Schwarz-Erle und Gemeine Esche. Bei diesen Arten nehmen die Vitalitätsklassen 1 und 2 weniger als 50 % ein.

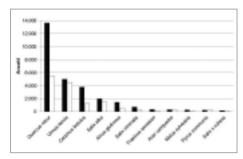


Abb. 1: Etablierungsrate der Baumarten auf der Fläche "Oberholz" 15 Jahre nach Pflanzung.

- = Anzahl Pflanzplan
- ☐ = Anzahl etablierter Individuen

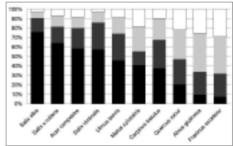


Abb. 2. Vitalitätsklassen der Bäume auf der Fläche "Oberholz" 15 Jahre nach Pflanzung.

- = Vitalitätsklasse 1
- = Vitalitätsklasse 2
- = Vitalitätsklasse 3
- = Vitalitätsklasse 4

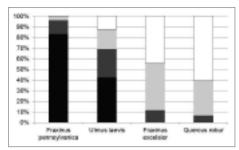


Abb. 3: Vitalitätsklassen der Bäume auf der Fläche "Drei Eichen" 15 Jahre nach Pflanzuna.

- = Vitalitätsklasse 1
- = Vitalitätsklasse 2
- = Vitalitätsklasse 3
- □ = Vitalitätsklasse 4

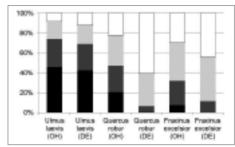


Abb. 4: Vergleich der Vitalität der drei Hauptbaumarten auf der Fläche "Oberholz" (OH) und "Drei Eichen" (DE).

- = Vitalitätsklasse 1
- = Vitalitätsklasse 2
- = Vitalitätsklasse 3
- □ = Vitalitätsklasse 4

Auf der Fläche "Drei Eichen" ist die räumliche Anordnung der Pflanztrupps auch ca. 15 Jahre nach Pflanzung noch deutlich zu erkennen. Insgesamt wurden hier 2.524 Individuen, davon 796 Flatter-Ulme, 769 Stiel-Eiche, 246 Gemeine Esche und 699 Rot-Esche, gepflanzt. Diese verteilen sich auf 69 Stiel-Eichen-Trupps, 24 Flatter-Ulmen-Trupps, 16 Gemeine Eschen-Trupps und 19 Rot-Eschen-Trupps. In 10 Pflanztrupps treten beide Eschenarten auf.

Die Flatter-Ulme ist mit durchschnittlich 6 m und maximal 13 m die höchste Art. Ca. 70 % der Ulmen-Individuen sind vital oder nur schwach geschädigt (Abb. 3). Die Stiel-Eiche weist mit einem Anteil von über 90 % in den Vitalitätsklassen 3 und 4 deutliche Schadmerkmale auf. Dies trifft sowohl für die Trupps mit als auch ohne Strauchmantel zu. Ebenso ist die Gemeine Esche zu 90 % geschädigt bzw. stark geschädigt. Hingegen waren über 80 % der Rot-Esche bei einer mittleren Höhe von 1,55 m, infolge eines Rückschnitts im Jahr 2009, der Vitalitätsklasse 1 und 2 zuzuordnen.

Da bereits im Winter 2009/2010 jeweils 60 Pflanztrupps erfasst wurden (Purps 2010), war ein Vergleich mit dem Jahr 2011 möglich. Während bei der Stiel-Eiche und der Flatter-Ulme nur geringfügige Unterschiede erkennbar sind, wurden in 15 Pflanztrupps der Gemeinen Esche nur noch ca. 20 % der 2009/2010 erfassten Individuen nachgewiesen.

Die Stiel-Eiche unterscheidet sich auf den zwei Flächen signifikant in der Vitalität (Abb. 4). Auf der Fläche "Drei Eichen" sind über 90 % der Eichen geschädigt oder stark geschädigt. Auf der Fläche "Oberholz" ist die Art nur zu ca. 50 % geschädigt bzw. stark geschädigt, 27 % wurden als schwach geschädigt und 21 % als vital kartiert. Zudem ist die Stiel-Eiche auf der Fläche "Oberholz" mit durchschnittlich 6,8 m mehr als doppelt so hoch wie auf der Fläche "Drei Eichen" (3,1 m).

Signifikante Unterschiede sind auch bei der Gemeinen Esche nachzuweisen. Annähernd 90 % der Eschen sind auf der Fläche "Drei Eichen" geschädigt bzw. stark geschädigt, nur 11 % weisen schwache Schädigungen auf. Vitale Individuen nehmen einen Anteil von weniger als 1 % ein. Auf der Fläche "Oberholz" sind 25 % der Individuen schwach geschädigt, 8 % sind vital. Auf der Fläche "Drei Eichen" beträgt die mittlere Höhe 3,14 m, auf der Fläche "Oberholz" 5,11 m.

Hingegen unterscheidet sich die Flatter-Ulme in Hinblick auf Vitalität nicht zwischen den Flächen, jedoch sind auch die Ulmen auf der Fläche "Drei Eichen" mit 6,0 m im Durchschnitt signifikant kleiner als auf der Fläche "Oberholz" (8,84 m).

4 Diskussion

4.1 Fläche "Oberholz"

Auf der Fläche "Oberholz" ist die Hainbuche aktuell vitaler als die Stiel-Eiche. Zudem wurden fast keine abgestorbenen Hainbuchen, aber eine Vielzahl abgestorbener Eichen nachgewiesen. Da die Hainbuche mit nur 32 % eine geringere Etablierungsrate als die Stiel-Eiche (40 %) aufweist, ist zu vermuten, dass die Ausfälle bei der Hainbuche länger zurückliegen als bei der Eiche. Während Seifert et al. (1996) wenige Wochen nach der Pflanzung nahezu keine abgestorbenen bzw. durch Wildschäden oder Mäusefraß beeinträchtigten Gehölze erfasst haben, wiesen PATZ et al. (2000) an 30 % der Stiel-Eichen im höher gelegenen Teil der Fläche hohe Ausfälle durch Mäusefraß nach. Nach einem langen Überstau durch Qualmwasser im Winter 1998/99 wurde die Mäusepopulation und damit auch die Schäden stark reduziert (PATZ et al. 2000).

Des Weiteren wirkten sich Spätfröste der Jahre 1997 bis 1999 negativ auf die Entwicklung der Stiel-Eiche aus (PATZ ET AL. 2000). Im Jahr 2011 führte der Befall, v. a. von Individuen in den nordwestlichen Randbereichen, durch den Eichenprozessionsspinner zur Herabstufung um eine Vitalitätsklasse. Ebenso wiesen nahezu alle Eichen einen Befall mit Eichenmehltau auf.

Einfluss auf die aktuelle Vitalität nimmt auch die Konkurrenzsituation. Die zwischen hohen Weiden stehenden Eichen sind häufig abgestorben oder stark geschädigt. Allerdings weisen einige Korb-Weiden bereits einen starken Schrägstand auf.

4.2 Fläche "Drei Eichen"

Als Hauptursache für die geringe Vitalität der Stiel-Eiche und der Gemeinen Esche sind der Befall durch den Eichenprozessionsspinner bzw. das Eschentriebsterben sowie für beide Arten Wildverbiss und Hochwasserschäden zu nennen. Obwohl die gesamte Fläche umzäunt war, wurden seit 1997 durch Rehwild, insbesondere an der Stiel-Eiche, starke Verbissschäden verursacht (Purps 2010). Ebenso hatte die Strauchummantelung der Eichen-Trupps nicht den gewünschten Schutzeffekt. Eine höhere Etablierungsrate und Vitalität wiesen nur die Individuen in einem Eichentrupp auf, der separat im Zeitraum 1999–2001 gezäunt wurde (mdl. Purps 2011). Die hohe Anzahl an Eichen mit basalem Stockausschlag ist auf mechanische Schäden durch eine kompakte Eisschicht in Verbindung mit dem Hochwasser im Januar 2011 zurückzuführen.

Der schlechte Zustand der Gemeinen Esche ist in erster Linie auf das Eschentriebsterben zurückzuführen (BERGER ET AL. 2010). Da die meisten der abgestorbenen Individuen bereits über 4 m hoch sind und die Anzahl der Eschen-Individuen zwischen 2009/2010 und 2011 stark zurück gegangen ist, ist zu vermuten, dass sie erst in jüngster Vergangenheit abgestorben sind.

4.3 Flächenvergleich

Die Stiel-Eiche und die Gemeine Esche weisen auf der Fläche "Oberholz" eine signifikant höhere Vitalität auf. Aus den Bodenverhältnissen können bislang keine ausreichenden Gründe abgeleitet werden, jedoch zeichnete sich die Fläche "Oberholz", insbesondere in den Anfangsjahren, durch geringeren Wildverbiss aus (Purps 2010). Zudem scheinen die Gehölze im dichten Reihenbestand weniger anfällig gegenüber Schädlingsbefall, Spätfrost, Trockenheit und Hochwasserereignissen mit Eisschur zu sein. Außerdem ist zu vermuten, dass die Pflanzung mittels Bodenmeißel und Pflanzlochbohrer bessere Etablierungsvoraussetzungen bietet, als die Spatenpflanzung auf der Fläche "Drei Eichen" (PATZ ET AL. 2000).

Die Flatter-Ulme hat sich auf beiden Flächen gleichermaßen gut entwickelt, Schadmerkmale, wie z.B. Ulmenwelke, wurden nicht nachgewiesen. Dies könnte darin begründet sein, dass die Art noch zu geringe Stammdurchmesser (mittlerer BHD auf der Fläche "Drei Eichen" 10,6 cm) für einen Befall aufweist (Nierhaus-Wunderland und Engesser 2003). Zudem gilt die Flatter-Ulme von den einheimischen Arten als am wenigsten anfällig.

Auf beiden Flächen konnte bislang kein Zusammenhang zwischen Höhenlage und den damit einhergehenden Überflutungszeiträumen und der Vitalität der Gehölze ermittelt werden. Im Jahr 2010 resultierten je nach Höhenlage Überflutungszeiträume von mehr als 140 Tagen, die z.T. deutlich über den von Dister (1981) und Späth (1988) ermittelten Überflutungstoleranzen liegen.

5 Fazit

Die zwei untersuchten Flächen sind im Jahr 2011, trotz der z. T. eingeschränkten Vitalität der drei Hauptbaumarten Stiel-Eiche, Gemeine Esche und Flatter-Ulme, überwiegend durch Gehölzstrukturen gekennzeichnet, die dem Entwicklungsalter und dem entsprechenden Pflanzkonzept entsprechen. Ein Grund dafür liegt sicherlich darin, dass sich die Bäume über einen Zeitraum von 15 Jahren im Schutz des Altdeiches und demzufolge u. a. ohne Einfluss von Eisschur etablieren konnten. Inwieweit Eschentriebsterben, Eichenprozessionsspinner oder potenziell auch Ulmenwelke Einfluss auf die Bestandesentwicklung nehmen, kann z. Zt. nicht abschließend beurteilt werden.

Ebenso bleibt fraglich, ob die Weiden in den Reihenpflanzungen die Funktion von Ammenbäumen übernehmen können. Zwar tragen sie zur raschen Ausbildung eines Waldinnenklimas bei. Allerdings üben sie auf Grund ihres beachtlichen Höhenzuwachses auch einen starken Konkurrenzdruck auf die langsamer wachsenden Hauptbaumarten aus. Ob es durch das frühere Absterben der Weiden zu einer dynamischen Bestandesentwicklung kommt, ist gegenwärtig ungewiss. Da in anderen Bereichen der Deichrückverlegung, insbesondere auf offenen Bodenflächen, eine z.T. flächige Weidensukzession zu beobachten ist, sollte zukünftig stärker in Erwägung gezogen werden, unabhängig vom Überflutungsregime zunächst Pionierwaldstrukturen aus Weidenarten zu etablieren. Die Verwendung der neophytischen Rot-Esche sollte in jedem Fall unterbleiben (vgl. auch SCHMIEDEL 2010).

Eine Reihenpflanzung ist nicht grundsätzlich abzulehnen. Jedoch sollte der enge Reihenverband (2 m x 1 m) durch einen weiteren Pflanzverband ersetzt werden. HOFMANN ET AL. (2005) schlagen für die Begründung eines Flatter-Ulmen-Stieleichen-Bestandes an der Unteren Oder einen Verband von 4 m x 1,5 m vor. Allerdings ist bei Reihenpflanzungen die Gefahr von Mäusefraß in den Anfangsjahren nicht zu unterschätzen.

Eine Trupp-Pflanzung schafft günstigere Voraussetzung für die Entwicklung von stärker strukturierten Waldbeständen. Allerdings sollten die Pflanztrupps mindestens 30 m Durchmesser mit einem Pflanzabstand von 2,5 m x 2,5 m aufweisen. Ein breiterer Strauchmantel kann zur Bestandesdifferenzierung beitragen. Sowohl die Ergebnisse dieser Arbeit als auch z.B. von GLAESER ET AL. (2009) sowie OSTERLOH (2007) verdeutlichen die hohe Bedeutung eines effektiven Verbissschutzes für eine erfolgreiche Gehölzetablierung. Allerdings können Flächen größer 2 ha wahrscheinlich kaum wilddicht gezäunt werden. Ebenso resultieren in der rezenten Aue durch mit dem Hochwasser eingeschwemmtes Getreibsel zeit- und kostenaufwändige Reparaturen.

Danksagung

Wir bedanken uns bei Jochen Purps für die Bereitstellung von Daten, Unterstützung bei der Geländearbeit und zahlreichen Hinweisen zur Datenauswertung.

Literatur

- BERGER, R., HEYDECK, P., BAUMGART, A. und A. ROLOFF (2010): Neue Ergebnisse zum Eschentriebsterben. Allgemeine Forst Zeitschrift-Der Wald 65: S. 18-21.
- DISTER, E. (1981): Zur Hochwassertoleranz von Auenwaldbäumen in lehmigen Standorten. Verhandlung Ges. Ökol. 10: S. 325-336.
- GLAESER, J. (2004): Ancient and recent woodland species composition in the floodplain forest in the Middle Elbe area. UFZ-Bericht 18: S. 222-223.
- GLAESER, J., BLESNER, K., BROSNSKIY, A., CEKO, R., GUTTMANN, S., KREIBICH, M., OSTERLOH, S., PASSING, A., SCHWABE, S., TIMPE, C. und B. FELINKS (2009): Erfolgskontrolle von Hartholzauenwald-Aufforstungen in der Kliekener Aue. Naturschutz im Land Sachsen-Anhalt 46, Sonderheft 2009: S. 41–48.
- HOFMAN, G., JENSSEM, M., POMMER, U., TREICHEL, D. und R. BURYN (2005): Auenwälder und Leitbild einer Auenwald-Initialisierung im Nationalpark Unteres Odertal. Beitr. Forstwirtsch. u. Landsch.ökol. 39: S. 49-71.
- NIERHAUS-WUNDERWALD, D. und R. ENGESSER (2003): Ulmenwelke Biologie, Vorbeugung und Gegenmaßnahmen. Merkblatt für die Praxis, Forschungsanstalt WSL 20: 6 S.
- OSTERLOH, S. (2007): Ersterfassung und Bewertung ausgewählter Waldränder im Rahmen einer Erfolgskontrolle der Hartholz-Auenwald-Wiederbegründung in der Kliekener Elbaue. Unveröffentl. Bachelorarbeit an der Hochschule Anhalt, Bernburg.
- PATZ, G., LÖFFLER, S. und R. KÄTZEL (2000): Teilprojekt 4: Forstwirtschaft. In: NEUSCHULZ, F., PURPS, J. und M. HAPE (Hrsg.) Möglichkeiten und Grenzen der Auenregeneration und Auenwaldentwicklung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg). Abschlussbericht, BMBF-Forschungsvorhaben, FKZ 0339571.
- PEPL (2005): Pflege- und Entwicklungsplan Naturschutzgroßprojekt "Lenzener Elbtalaue". Trägerverbund Burg Lenzen (Elbe) e.V.
- Purps, J. (2010): Bericht zur Evaluation des Erfolges der Auwaldinitialisierungen im Deichrückverlegungsgebiet Lenzen im Rahmen des Naturschutzgroßprojektes Lenzener Elbtalaue. Unveröff.

 Gutachten im Auftrag des Trägerverbundes Burg Lenzen e.V.
- PURPS, J. (1999): Auenwaldentwicklung an der Unteren Mittelelbe und Perspektiven des Auwaldes an der Elbe und an weiteren Flüssen.
- SCHMIEDEL, D. (2010): *Fraxinus pennsylvanica* in den Auenwäldern der Mittelelbe. Invasionsbiologie und ökologisches Verhalten im naturschutzfachlichen Kontext. Berliner Beiträge zur Ökologie Bd. 6, Weißensee Verlag, Berlin.
- SEIFERT, K., GUST, E. und D. SPEER (1996): Dokumentation Auwald "Oberholz". Bestandsaufnahme erarbeitet von der Landschaftspflege GmbH Lenzen im Auftrag der Naturparkverwaltung "Brandenburgische Elbtalaue".
- SPÄTH, V. (1988): Zur Hochwassertoleranz von Auenwaldbäumen. Natur und Landschaft 63: S. 312-315.

Katharina Nabel, Hochschule Anhalt, Fachbereich Landwirtschaft, Ökotrophologie und Landschaftsentwicklung

1 Einleitung

Die vorliegende Arbeit ist Teil einer umfassenden Analyse der eigendynamischen Vegetationsentwicklung nach der Wiederherstellung eines naturnahen Überflutungsregimes im Deichrückverlegungsgebiet "Lenzener Elbtalaue". Da die Diasporenverfügbarkeit einen entscheidenden Einfluss auf das Entwicklungspotenzial bei Renaturierungsmaßnahmen haben kann (vgl. ROSENTHAL 2000, HÖLZEL 2003, HÖLZEL ET AL. 2009), wurde im Gebiet der Deichrückverlegung sowohl das durch Hochwasser eingetragene Getreibsel als auch die Bodendiasporenbank repräsentativer Standorte beprobt. Durch Analyse und Vergleich der Artenzusammensetzung der Bodendiasporenbank, der oberirdischen Vegetation und der hydrochor eingetragenen Diasporen sollen Aussagen zum Entwicklungspotential verschiedener Offenlandbiotope in der Deichrückverlegung abgeleitet werden. Nachfolgend werden erste Ergebnisse aus dem Zeitraum von 2010 und 2011 vorgestellt.

2 Methodik

2.1 Getreibsel

Im Jahr 2010 traten fünf Hochwasserereignisse auf, die eine Überflutung durch Deichschlitz 1 zur Folge hatten. Jeweils ca. 10 Tage nach dem Absinken des Hochwassers unter 4,10 m am Pegel Wittenberge wurden Getreibselsäume und -haufen an verschiedenen Orten innerhalb und außerhalb der Deichrückverlegung beprobt. Da unmittelbar im Anschluss an die erste Überflutung Anfang März eine zweite Überflutung Anfang April erfolgte, wurden die Proben beider Hochwasserereignisse zusammengefasst. Des Weiteren wurde Mitte Juni, Mitte August und Anfang Oktober 2010 Getreibsel gesammelt.

Das Material von einem Termin wurde zu einer Mischprobe vereinigt und vor der Aussaat im Gewächshaus wurden größere, nicht-keimfähige Teile entfernt. Dabei wurden auch auffällige, im Getreibsel enthaltene Diasporen notiert. Anschließend wurden jeweils 8 Portionen von 500 ml Getreibsel mit einer Schichtdicke von ca. 2 – 3 cm auf mit steriler Aussaaterde gefüllten Keimschalen ausgebracht. Die auflaufenden Keimlinge wurden gezählt und entfernt. Nicht bestimmbare Keimlinge wurden separat großgezogen. Die Versuche wurden im Gewächshaus belassen bis keine neuen Keimlinge mehr aufliefen.

2.2 Bodendiasporenbank

Zur Analyse der Bodendiasporenbank erfolgte eine Stratifizierung der Flächen nach den vegetationsdeterminierenden Parametern Ausgangsbestand / Biotoptyp, Alter und Nutzung des Bestandes, Feuchtestufe (relative Geländehöhe) sowie Lage in der Aue (Deichrückverlegung, inaktive Aue, Altaue) (vgl. Tab. 1).

Ausgangsbestand/ Biotoptyp	Alter	Nutzung	Feuchte- stufe	Auenkom- partiment	Name kurz	An- zahi
Rohricht	alt	alte Pflanzung	feucht	DRV	F1	3
Flutrasen	mittel	junge Pflenzung	feucht	DRV	F2	4
Flutrasen	mittel	junge Pflanzung	feucht	inaktive Aue	F3	3
Pionierfluren	jung	Bauma Briahmen	feucht	DRV	F4	4
Röhricht	alt	Sukzession	feucht	Altaue	P5	3
Grünland	alt	alte Pflanzung	frisch	DRV	T1	3
Grünland	mittel	junge Pflerwung	frisch	DRV	T2	5
Grünland	mittel	Sukzession	frisch	inaktive Aue	T3.	8
Hochstaudenfur	alt	Sukzession	frisch	Altaue	T4	3

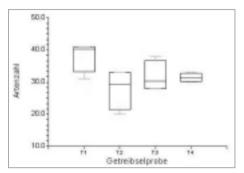
Tab. 1: Bodendiasporenbank: Übersicht der beprobten Standorte.

Auf den Probeflächen wurden je 8 Beprobungsorte zufällig ausgewählt, an denen je 8 bis 10 Proben mit einem Erdbohrer von 3 cm Durchmesser genommen wurden. Das Material wurde in Oberboden (0 bis 5 cm) und Unterboden (5 bis 10/12 cm) geteilt und je Probefläche zu einer Mischprobe vereinigt. Vor der Aussaat wurden größere Pflanzenteile entfernt sowie vegetative Pflanzenteile identifiziert. Von jeder Mischprobe wurden je 4 Portionen mit einer Schichtdicke von 1 – 2 cm auf mit steriler Aussaaterde gefüllten Saatschalen ausgebracht. Die in der Bodendiasporenbank enthaltenen keimfähigen Arten und ihre Anzahl wurden per Auflaufverfahren (ROBERTS 1981) ermittelt. Aus vegetativen Pflanzenteilen ausgetriebene Individuen wurden nicht gezählt, aber die Arten notiert. Die Beprobung wurde 2010 begonnen und bis 2012 fortgesetzt, so dass die vorgestellten Ergebnisse einen Zwischenstand repräsentieren.

Zusätzlich wurde auf den Probeflächen die oberirdisch etablierte Vegetation mittels Vegetationsaufnahmen erfasst.

2.3 Artbestimmung und Ökologie der Arten

Die Bestimmung der auflaufenden Arten erfolgte nach HANF (1990), KLAPP und VON BOBERFELD (1990, 1995), JÄGER und WERNER (2000, 2002) und EGGENBERG und MÖHL (2009). In einigen Fällen konnten die Keimlinge bei einem Massenauflaufen nicht bis zur Artebene bestimmt werden. Diese wurden dann als Artengruppen erfasst (z.B. Rumex crispus / R. stenophyllus - teilweise auch gemeinsame Erfassung mit R. maritimus oder Artengruppe aus Juncus bufonius / J. effusus).


Die Artbestimmung im Gelände erfolgte nach Jäger und Werner (2000, 2002). Die Gefährdung wurde den Roten Listen der BRD (Ludwig und Schnittler 1996) und Brandenburgs (LUA 2006) entnommen. Die Zuordnung der Arten zu Biotoptypen erfolgte nach Zimmermann et al. (2007), Schubert et al. (2001), Jäger und Werner (2002) sowie nach den Datenbanken "bioflor" (Klotz et al. 2002) und "floraweb" (BfN 2012). Die Arten wurden 13 unterschiedlichen Biotoptypen zugeordnet. Die Ermittlung des floristischen Status erfolgte mittels "bioflor" (Klotz et al. 2002). Daten zur Langlebigkeit der Diasporen wurden Fitter und Peat (1994), Thompson et al. (1997), Hölzel und Otte (2004) und Kleyer et al. (2008) entnommen. Die Ziel- und Leitarten der Auenrenaturierung wurden dem PEPL (2005) entnommen.

3 **Ergebnisse**

3.1 Getreibsel

Aus dem Getreibsel keimten insgesamt 9.991 Keimlinge aus, die 95 Arten zugerechnet werden konnten. Die folgenden sechs Arten stellen insgesamt 83 % (8.233) der gesamten Individuen: Lycopus europaeus (2.105), Artengruppe Rumex crispus / R. maritimus / R. stenophyllus (3.594), Rorippa palustris (797), Oenanthe aquatica (638), Carex vulpina (584) und Atriplex prostrata (515). Weiterhin traten Berula erecta, Carex acuta, Myosurus minimus, Rumex obtusifolius und Tripleurospermum perforatum mit jeweils über 100 Individuen auf. 47 Individuen konnten nicht bis zur Art bestimmt werden (Absterben im Keimlingsalter).

Bei der ersten Beprobung wurden 62 Arten festgestellt. Die Artenzahl nahm bei der zweiten und dritten Beprobung auf jeweils 47 Arten ab, bei der vierten Beprobung wurden 53 Arten gefunden (Abb. 1a). Auch die Individuenzahl verringerte sich von 2.725 Individuen in der ersten Probe auf 1.431 Individuen in der zweiten Probe (Abb. 1b). Anschließend war wieder ein Anstieg auf 2.265 bzw. 3.523 Individuen zu verzeichnen.

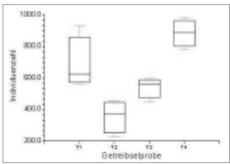


Abb. 1a: Artenzahl Getreibselproben. Abb. 1b: Individuenzahl Getreibselproben. T1 = März/April; T2 = Mitte Juni, T3 = Mitte August, T4 = Anfang Oktober (jeweils 2010)

Die meisten im Getreibsel enthaltenen Arten sind dem mesophilen bzw. wechselfeuchten Grünland, den Zweizahnfluren und den Flutrasen zuzuordnen (Tab. 2).

Das Spektrum der Zugehörigkeit der Arten zu Biotoptypen verändert sich über das Jahr kaum. Betrachtet man hingegen die Zugehörigkeit der Individuen zu Biotoptypen, sind über das Jahr Veränderungen festzustellen (Tab. 2). Die meisten Individuen gehören den Biotoptypen Flutrasen, Zweizahnfluren, Schlammlingsfluren und Zwergbinsengesellschaften, Kleinröhrichten und wechselfeuchtes Grünland an. Der Anteil der zu den Kleinröhrichten gehörenden Individuen nimmt über das Jahr ab, der Anteil der zu den Schlammlingsfluren und Zwergbinsengesellschaften gehörenden Individuen nimmt hingegen zu. Für die Biotoptypen Zweizahnfluren und Flutrasen kann diesbezüglich keine Aussage getroffen werden, da ein Großteil der zugehörigen Individuen der Gattung Rumex angehört und in den Proben T3 und T4 nicht zwischen Rumex crispus / R. stenophyllus (Flutrasen) und R. maritimus (Zweizahnfluren) unterschieden werden konnte.

Als im Getreibsel regelmäßig auftretend bis häufig vorkommend können die in den Roten Listen der BRD / Brandenburgs geführten Arten Carex praecox (3/-), Carex vulpina (3/V), Galium

	Arte	n			Individ	luen			
Bioloptyp	T1	T2	Т3-	T4	T1	TZ	T3	T4	Summe
wechselfeschte Grünland- brachen	1				1	-			1
Wechselfeuchtes Grünland	11	7	5	10	36	13	21	184	254
Mesophiles Grünland	7	4	6	6	13	5	17	49	84
Mesophile Grünlandbrachen	3	3	4	1	6	4	18	1	29
Nitrophile Flussufersaum- gesellschaften	3	2	3	2	29	8	7	13	57
Zweizahnfuren	8	9	5	5	933	372	137	156	1,598
Artengruppe Ramer crispus / R. stenophylius / R. maritimus			2	2		-	577	2.033	2.610
Flutrasen	9	7	7	7	1.214	826	762	363	5.765
Kleinrährichte	3	3	2	4	348	144	111	145	748
Großröhrichte	5	5	3	4	63	16	33	70	182
Schlammlingsfuren und Zweigbinsengesellschaften	6	4	4	4	69	32	578	472	1.149
Wasserpflanzengesellschaften	1		2	-	2	-	8		10
Gehölze	3		1	-	7	-	6		12
Sonstige einjährige Ruderal- gesellschaften	3	3	1	6	4	11	3	37	55
Unbekannte Keimlinge	-		-	-	18	1	9	19	47

53

Tab. 2: Zugehörigkeit a) der Arten und b) der Individuen der Getreibselproben zu Biotoptypen. T1 = März/April; T2 = Mitte Juni, T3 = Mitte August, T4 = Anfang Oktober (jeweils 2010)

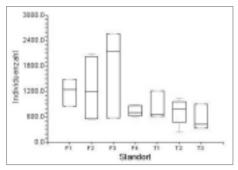
palustre (-/V) und Myosurus minimus (-/V) genannt werden. Weiterhin konnten wenige oder einzelne Individuen von Achillea ptarmica (-/V), Carex vesicaria (-/V), Lotus corniculatus (-/V), Scutellaria hastifolia (2/2) und Thalictrum flavum (-/V) nachgewiesen werden. Zudem wurden die zwei Neophyten Bidens frondosa und Eragrostis albensis erfasst. Als im PEPL (2005) aufgeführte Zielarten konnten nur Deschampsia cespitosa mit sechs Individuen und Scutellaria hastifolia mit einem Individuum gefunden werden.

2.725 1.431

2.265

3.523

3.391


Als Gehölzarten keimten lediglich *Populus x hybridus, Salix cinerea* und *S. caprea*, die jedoch keine Zielarten der Auenrenaturierung darstellen. Von *Ulmus laevis, U. carpinifolia, Crataegus spec.* und *Quercus robur* wurden zwar visuell Diasporen im Getreibsel festgestellt, diese waren aber offensichtlich unter den gegebenen Bedingungen nicht keimfähig.

3.2 Bodendiasporenbank

Summe

In den bis 2011 ausgewerteten Proben wurden insgesamt 24.829 Keimlinge gezählt, die 154 Arten zugeordnet werden konnten (Abb. 2a, 2b). 59 Keimlinge konnten nicht bis zur Art bestimmt werden (Absterben im Keimlingsalter). Am häufigsten sind die Artengruppe Juncus effusus / J. bufonius (5.642), Chenopodium polyspermum (2.048), Rumex maritimus (1.399), Artengruppe Alopecurus geniculatus / A. aequalis (1.333), Artengruppe Agrostis tenuis / A. stolonifera (1.329) und Veronica scutellata (749).

In den 10 Proben der feuchten Standorte (F1 – F3) konnten insgesamt 14.002 Individuen aus 108 Arten nachgewiesen werden. Es dominierten neun Arten, die jeweils mindestens einen

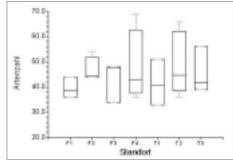


Abb. 2a: Bodendiasporenbank, Individuenzahl.

Abb. 2b: Bodendiaporenbank, Artenzahl.

Anteil von > 2 % und insgesamt einen Anteil von 70 % hatten (gemeinsamer Anteil von Juncus effusus / J. bufonius 26 %). Die Pionierfluren des Standortes F4 wiesen 2.947 Individuen auf, die zu 92 Arten gehörten. Hier dominierten 10 Arten mit einem Anteil von > 2 % und insgesamt 72,5 % (gemeinsamer Anteil von Juncus effusus / J. bufonius 19 %). In den Proben der frischen Standorte (T1 bis T3) wurden insgesamt 7.880 Individuen gefunden, die 121 Arten zugehörten. 13 Arten mit einem Anteil von jeweils > 2 % machten insgesamt 70 % aus (gemeinsamer Anteil von Juncus effusus / J. bufonius 27,5 %).

Die Proben der feuchten Standorte zeichneten sich im Mittel durch wesentlich höhere Individuenzahlen aus als die Proben der frischen Standorte (Abb. 2a). Die Artenzahlen hingegen lagen für beide Standorte bei ähnlichen Werten (Abb. 2b). Die Proben der Pionierfluren (F4) nahmen eine Sonderstellung ein: hier wurden nur geringe Individuenzahlen erreicht, die Proben wiesen aber eine hohe mittlere Artenzahl und eine große Varianz innerhalb der Artenzahlen auf.

Auf den feuchten Standorten F1 bis F3 traten 13 Arten auf, die in den Roten Listen der BRD und/oder Brandenburgs geführt werden, die individuenstärksten Arten sind Carex vulpina (3/V), Galium palustre (-/V) und Myosurus minimus (-/V). In den Pionierfluren traten insgesamt 14 gefährdete Arten auf. Besonders erwähnenswert sind die für die Schlammlingsfluren und Zwergbinsengesellschaften typischen Arten Isolepis setacea (V/3), Limosella aquatica (-/3), Myosurus minimus (-/V), Peplis portula (-/V), Pulicaria vulgaris (-/3) und Spergularia echinosperma (-/2). Weiterhin wurden hier jeweils mehrere Individuen von Callitriche palustris agg. und Montia fontana agg. gefunden. In den Proben T1 bis T3 konnten insgesamt 11 gefährdete Arten gefunden werden, relativ häufig waren Achillea ptarmica (-/V), Campanula patula (-/V), Carex vulpina (3/V), Galium palustre (-/V), Lotus corniculatus (-/V) und Ranunculus auricomus (-/3). Von den im PEPL (2005) genannten Zielarten konnten nur Deschampsia cespitosa und Pulicaria vulgaris gefunden werden.

4 Diskussion

4.1 Getreibsel

Die starke Abnahme sowohl der Arten- als auch der Individuenzahl in der zweiten Getreibselprobe aus dem Juni 2010 liegt darin begründet, dass ein Teil der potentiell hydrochor ausgebreiteten Diasporen durch Auskeimen, Kompostierung oder anderen Gründen bereits über kurze Zeit verlorengeht (vgl. KATENHUSEN 2001, VOGT 2006). Daraus resultiert über das Jahr besonders eine Abnahme der Individuenzahlen der Arten der Zweizahnfluren und der Kleinröhrichte. Bei den Zweizahnfluren betrifft dies insbesondere Atriplex prostrata, Bidens frondosa, Bidens tripartita und Tripleurospermum perforatum. Der Rückgang der Individuenzahl bei den Kleinröhrichten ist insbesondere durch die Abnahme von Oenanthe aquatica zu erklären. Diese Art besiedelt vor allem die bereits früh im Jahr trocken fallenden Senken und Uferbereiche (Weiß und Peterson 2001) und weist eine kurzlebige Samenbank auf (KLEYER ET AL. 2008).

Die Zunahme im Jahresverlauf der zum Lebensraumtyp Zwergbinsengesellschaften und Schlammlingsfluren gehörenden Individuen ist durch eine Zunahme der Arten *Myosurus minimus* und *Rorippa palustris* bedingt. Beide Arten zeichnen sich durch eine hohe Produktion langlebiger Diasporen aus (THOMPSON ET AL. 1997, WEIß und PETERSON 2001). Die Standorte dieses Biotoptyps fallen typischerweise erst im Spätsommer oder im Herbst trocken. Die zum Ende der Vegetationsperiode beobachtete Zunahme der Arten- und der Individuenzahl kann durch die zu diesem Zeitpunkt bereits abgeschlossene Reproduktion zahlreicher Arten erklärt werden.

Ein Teil der über das Getreibsel ausgebreiteten Arten zeichnet sich vermutlich durch eine Dormanz der Diasporen aus und es bedarf einer Stratifizierung durch Frost oder Dunkelheit (vgl. Thompson et al. 1997) oder auch Überstauung (BISSELS 2005).

Die meisten aus dem Getreibsel gekeimten Individuen zählen zu wenigen Arten, die zudem eine weite Verbreitung in der Elbtalaue aufweisen. Der Anteil der im PEPL (2005) genannten Zielarten ist mit *Deschampsia cespitosa* sowie *Scutellaria hastifolia* gering. Zurückzuführen ist dies wahrscheinlich darauf, dass die meisten der Ziel- und Leitarten nicht, oder nur sehr selten in der Vegetation des Gebietes bzw. der näheren Umgebung vorkommen (vgl. ROSENTHAL und HÖLZEL 2009). Allerdings ist der überwiegende Teil der nachgewiesenen Arten aber typisch für die im PEPL (2005) genannten Biotoptypen und Pflanzengesellschaften.

4.2 Bodendiasporenbank

Besonders die Proben der feuchten Standorte werden von vielen Individuen weniger Arten dominiert. Bei den am häufigsten gefundenen Arten handelt es sich überwiegend um Ruderalstrategen oder Mischtypen (KLOTZ ET AL. 2002), die sich schnell reproduzieren, große Mengen an Samen produzieren und sich durch Langlebigkeit auszeichnen (FITTER und PEAT 1994, THOMPSON ET AL. 1997, HÖLZEL und OTTE 2004, KLEYER ET AL. 2008). Diese Strategie ist typisch für Arten früherer Sukzessionsstadien, die sich auf den durch regelmäßige, längerfristige Überflutung und Überstauung gestörten Standorten herausbilden. Hingegen konnten auf den durch weniger Störungen ausgewiesenen Grünlandstandorten höhere Artenzahlen und ein ausgewogeneres Verhältnis zwischen Individuen- und Artenzahl gefunden werden (vgl. BOSSUYT und HONNAY 2008).

Auch in der Bodendiasporenbank sind nur wenige gefährdete Arten und wenige Zielarten zu finden, was ebenfalls durch das weitgehende Fehlen dieser Arten im Gebiet begründet ist.

Der zumeist noch geringe Anteil der häufig im Getreibsel nachgewiesenen Arten wird sich vermutlich mit der Zeit erhöhen, da die Akkumulation der Diasporen im Boden einige Zeit in Anspruch nimmt (vgl. Schmiede et al. 2009). Weiterhin zeichnen sich die bisher kaum oder nicht in der Bodendiaporenbank nachgewiesenen Arten durch transiente Samenbanken aus (FITTER und Peat 1994, Thompson et al. 1997, Hölzel und Otte 2004, Kleyer et al. 2008).

Ein Vegetationsumbau ist zurzeit bereits in der oberirdisch etablierten Vegetation zu beobachten. So wird durch das großflächige Absterben nicht-überstauungsresistenter Arten auf den feuchten Standorten die Sameneinbringung in den Boden gefördert (vgl. KIEHL 2010). Demzufolge ist zu erwarten, dass dieser Prozess auf feuchten Standorten schneller verläuft als auf frischen.

Danksagung

Für die Hilfe bei der Probenahme danke ich Susanne Lehmann, Berit Schulz und Jennifer Drechsler. Ich danke Heike Garbe für die Unterstützung zur Einrichtung der Diasporenfanganlage und Birgit Felinks für die Durchsicht des Manuskriptes.

Literatur

- BfN (2012): FloraWeb Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands, Bundesamt für Naturschutz, http://www.floraweb.de, letzter Zugriff 10.10.2012.
- BISSELS, S. (2005): Restoration of alluvial grasslands. Effects of flooding and management on plant dispersal and recruitment. Dissertation, Justus-Liebig Universität Gießen.
- BOSSUYT, B. und O. HONNAY (2008): Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19: S. 875-884.
- EGGENBERG, S. und A. MÖHL (2009): Flora Vegetativa Ein Bestimmungsbuch für Pflanzen der Schweiz im blütenlosen Zustand, 2. Auflage, Bern, Stuttgart, Wien, Haupt Verlag.
- FITTER, A.H. und H.J. PEAT (1994): The Ecological Flora Database. Journal of Ecology 82: S. 415-425, http://www.ecoflora.co.uk, letzter Zugriff 10.10.2012.
- HANF, M. (1990): Ackerunkräuter Europas, 4. Auflage, München, BLV Verlagsgesellschaft mbH.
- HÖLZEL, N. (2003): Die ökologische Bedeutung von Samenbanken, Keimung und Etablierung für die Renaturierung von Auenwiesen. Habilitationsschrift, Justus-Liebig-Universität Gießen.
- HÖLZEL, N., REBELE, F., ROSENTHAL, G. und C. EICHBERG (2009): Ökologische Grundlagen und limitierende Faktoren der Renaturierung, In: ZERBE, S. und G. WIEGLEB (Hrsg.) Renaturierung von Ökosystemen in Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg.
- HÖLZEL, N. und A. OTTE (2004): Assessing soil seed bank persistence in flood-meadows: which are the easiest and most reliable traits? Journal of Vegetation Science 15: 93-100.
- JÄGER, E.J. und K. WERNER (2000): Rothmaler Exkursionsflora von Deutschland, Band 3: Atlasband, 10. Auflage, Heidelberg, Berlin, Spektrum, Akademischer Verlag.
- JÄGER, E.J. und K. WERNER (2002): Rothmaler Exkursionsflora von Deutschland, Band 4: Kritischer Band, 9. Aufl., Heidelberg, Berlin, Spektrum, Akademischer Verlag.

- KATENHUSEN, O. (2001): Die Ausbreitung von Pflanzen durch Hochwasser in norddeutschen Flusslandschaften. Zeitschrift für Ökologie und Naturschutz 9: S: 225-236.
- Kiehl, K., Kirmer, A., Donath, T.W., Rasran, L. und N. Hölzel (2010): Species introduction in restoration projects evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic and Applied Ecology 11: S. 285-299.
- KLAPP, E. und O. VON BOBERFELD (1990): Taschenbuch der Gräser. 12. Auflage, Berlin, Hamburg, Paul Parey.
- KLAPP, E. und O. VON BOBERFELD (1995): Kräuterbestimmungsschlüssel für die häufigsten Grünland- und Rasenkräuter zur Ansprache im blütenlosen Zustand. Berlin, Wien, Blackwell Wissenschafts- Verlag.
- KLEYER, M. ET AL. (2008): The LEDA Traitbase: A database of life-history traits of Northwest European flora. Journal of Ecology 96: 1266-1274. http://www.leda-traitbase.org, letzter Zugriff 10.10.2012.
- KLOTZ, S., KÜHN, I. und W. DURKA (2002): BIOLFLOR Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38.
- LUA Brandenburg (2006): Rote Liste Gefäßpflanzen. Naturschutz und Landschaftspflege in Brandenburg 15: S. 70-80.
- LUDWIG, G. und M. SCHNITTLER (1996): Rote Liste gefährdeter Pflanzen Deutschlands. Schriftenreihe für Vegetationskunde 28: 489 S.
- PEPL (2005): Pflege- und Entwicklungsplan Naturschutzgroßprojekt "Lenzener Elbtalaue". Luftbild Brandenburg, Planungsgruppe Landschaftsentwicklung. I.A. Trägerverbund Burg Lenzen e.V.
- ROBERTS, H.A. (1981): Seedbanks in soil. Advances in Applied Biology 6: S. 1-55.
- ROSENTHAL, G. (2000): Zielkonzeptionen und Erfolgsbewertung von Renaturierungsversuchen in nordwestdeutschen Niedermooren anhand vegetationskundlicher und ökologischer Kriterien. Habilitationsschrift Universität Stuttgart.
- ROSENTHAL, G. und N. HÖLZEL (2009): Renaturierung von Feuchtgrünland, Auengrünland und mesophilem Grünland. In: ZERBE, S. und G. WIEGLEB (Hrsg.): Renaturierung von Ökosystemen in Mitteleuropa. Heidelberg, Springer, S. 283-312.
- SCHMIEDE, R., DONATH, T.W. und A. OTTE (2009): Seed bank development after the restoration of alluvial grassland via transfer of seed-containing plant material. Biological Conservation 142: S. 404-413.
- SCHUBERT, R., HERDAM, H., WEINITSCHKE, H. und D. FRANK (2001): Prodromus der Pflanzengesellschaften Sachsen-Anhalts. Mitteilungen zur floristischen Kartierung Sachsen-Anhalt, Sonderheft 2.
- THOMPSON, K., BAKKER, J.P. und R.M. BEKKER (1997): The soil seed banks of North West Europe: methodology, density and longevity. Cambridge, University Press Cambridge.
- Vogt, K., Rasran, L. und K. Jensen (2006): Seed deposition in drift lines during an extreme flooding event-Evidence for hydrochorus dispersal? Basic and Applied Ecology 7: S. 422-432.
- Weiß, G. und J. Peterson (2001): Landschaftsraum Elbe-Lebensräume, In: Arten- und Biotopschutzprogramm Sachsen-Anhalt Landschaftsraum Elbe, Halle (Saale), Landesamt für Umweltschutz Sachsen-Anhalt. S. 67-185.
- ZIMMERMANN, F., DÜVEL, M., HERRMANN, A., STEINMEYER, A., BECKER, F., FLADE, M. und H. MAUERSBERGER (2007):
 Biotopkartierung Brandenburg Band 2, Beschreibung der Biotoptypen. 3. Auflage. Brandenburgische Universitätsdruckerei und Verlagsgesellschaft, Potsdam.

Kai Jensen¹, Nikola Lenzewski¹, Jürgen Dengler²

¹ Universität Hamburg, Angewandte Pflanzenökologie,

² Universität Hamburg, Biodiversität, Evolution und Ökologie der Pflanzen

1 Einleitung

Die Deichrückverlegung bei Lenzen an der Unteren Mittelelbe kann als ein großes ökologisches Experiment bezeichnet werden: Ehemals von der Elbe durch den uferparallelen Deich abgeschnittene Auen sind seit 2009 wieder an die Hochwasserdynamik angeschlossen. Auf diesen Flächen wurden durch die Deichschlitzung sowie durch die unterschiedlichen Entwicklungsvarianten (Grünlandbrache, Auwaldpflanzung, halboffene Weidelandschaft) ökologische Änderungen initiiert, die langfristig dazu führen sollen, dass sich in dem Gebiet wieder auentypische Ökosysteme entwickeln (PURPS ET AL. 2004). Durch umfangreiche Untersuchungen zu den hydrologischen und bodenökologischen Bedingungen sowie zur Vegetation (HELLWIG 2000, HEINKEN 2001) und zur faunistischen Ausstattung (MÜLLER ET AL. 1999, GRÄFE ET AL. 2002) sind die Ausgangsbedingungen vor der Deichrückverlegung gut dokumentiert. Die erhobenen Daten wurde ebenfalls genutzt, um mögliche Auswirkungen der Rückdeichung auf die Vegetation, aber vor allem auch auf die Abflussverhältnisse der Elbe und Grundwasserdynamik im Rückdeichungsgebiet zu prognostizieren (vgl. MONTENEGRO ET AL. 1999).

Langfristige Untersuchungen zur ökologischen Entwicklung nach Rückdeichung sind nach wie vor selten. In Abhängigkeit von den Ausgangsbedingungen, dem Ausmaß der eintretenden hydrologischen und bodenökologischen Änderungen und auch von etwaigen unterschiedlichen Initialmaßnahmen sind unterschiedliche Entwicklungen der Vegetation vorstellbar. Um im Gebiet der Deichrückverlegung bei Lenzen die mittel- bis langfristige Entwicklung zu erfassen, wird im Rahmen des Master-Studienganges Biologie der Universität Hamburg seit 2009 im zweijährigen Turnus ein Geländepraktikum im Rückdeichungsgebiet Lenzen durchgeführt. Im Jahr 2009 wurden, noch vor der ersten Überflutung, Dauerflächen angelegt, mit denen unterschiedliche Entwicklungsvarianten und Feuchtestufen repräsentiert werden. Auf den Untersuchungsflächen wird die Vegetationsentwicklung in zweijährigem Rhythmus dokumentiert. Begleitend werden bodenökologische und faunistische Untersuchungen durchgeführt. Mittelfristig sollen somit Aussagen über ökologische Änderungen der Vegetation und Fauna sowie Rückschlüsse auf Veränderungen der Standortbedingungen erarbeitet werden.

Ziel dieses Beitrags ist es, einen Überblick über die im Zeitraum 2009 bis 2011 aufgetretenen Vegetationsveränderungen im Gebiet der Deichrückverlegung zu geben. Dabei wird insbesondere untersucht, (i) inwiefern mögliche Effekte der hydrologischen Bedingungen und der Entwicklungsvarianten auf die Artenvielfalt der Vegetation maßstabsabhängig sind, (ii) ob über Ellenberg-Zeigerwerte bereits Rückschlüsse auf standörtliche Veränderungen möglich sind sowie (iii) ob es Verschiebungen hinsichtlich der als charakteristisch für bestimmte hydrologische Situationen zu bezeichnenden Arten der Vegetation gegeben hat.

2 Methoden

2.1 Untersuchungsdesign

Im Juni 2009 (vor der ersten Überflutung) wurden im Rückdeichungsgebiet 27 Untersuchungsflächen von je 10 x 10 m ausgewählt, möglichst exakt in Nord-Süd-Richtung ausgerichtet und mit einem GPS-Gerät eingemessen. Je zwei der Ecken wurden dauerhaft mit Erdmagneten markiert. Die Untersuchungsflächen verteilen sich gleichmäßig auf drei Feuchtestufen (frisch, feucht, nass; repräsentieren jeweils unterschiedliche Geländehöhen) und drei verschiedene Entwicklungsvarianten (Brache, Auwaldpflanzung, halboffene Weide). Es ergibt sich ein vollfaktorielles Design mit je drei Replikaten der einzelnen Kombinationen aus Feuchtestufe und Entwicklungsvariante.

2.2 Erfassung der Vegetation

Die Vegetation wurde Ende Juni 2009 sowie Anfang Juli 2011 aufgenommen: Hierzu wurden in den NW- und SO-Ecken auf Serien von genesteten Flächen (0,01 m²; 0,1 m²; 1 m²; 10 m²) sowie auf der Gesamtfläche (100 m²) alle vorkommenden lebenden Gefäßpflanzenarten erfasst (presence/absence; vgl. Dengler 2009). Auch Individuen, die nur in die jeweiligen Flächen hineinragten, wurden berücksichtigt. Auf den 10 m²-Flächen wurde zusätzlich der Deckungsgrad der Arten nach Londo (1975) ermittelt. Die Nomenklatur der Arten richtet sich nach WISSKIRCHEN und HAEUPLER (1998).

2.3 Auswertung

Für die Maßstabsebenen 1, 10 und 100 m² wurden für beide Jahre die Anzahl der Pflanzenarten ermittelt. Weiterhin wurden für die Maßstabsebene von 10 m² ungewichtete, mittlere Zeigerwerte (für Feuchte und Stickstoff; F- und N-Zahl) nach Ellenberg et al. (1992) mit dem Programm Juice (Version 7.0, 2010) berechnet. Hierbei wurden jeweils die zwei 10 m²-Flächen einer Gesamt-Aufnahmefläche als unabhängige Flächen behandelt. Mit Hilfe einer zweifaktoriellen Varianzanalyse (ANOVA) mit Messwiederholung wurde überprüft, inwiefern die Artenvielfalt sowie die mittleren Ellenberg-Zeigerwerte von den Faktoren Feuchtestufe, Entwicklungsvariante und Untersuchungsjahr beeinflusst wurden. Die Berechnung der Varianzanalysen erfolgte mit dem Programm Statistica für Windows (Version 10.0, StatSoft Inc. 2011).

Um einerseits mögliche Veränderungen der Vegetation zwischen den Jahren 2009 und 2011 zu detektieren und andererseits herauszufinden, welche Arten für die einzelnen Feuchtestufen bezeichnend sind, wurden für alle Arten in den Aufnahmegruppen der Maßstabsebene von 10 m² phi-Werte berechnet (vgl. Chytrey et al. 2002). Der phi-Wert gibt an, wie stark das Vorkommen von Arten an bestimmte Gruppen von Vegetationsaufnahmen gebunden ist. Er kann zwischen -1 und +1 liegen (-1: Art kommt in einer bestimmten Gruppe von Vegetationsaufnahmen nicht vor; +1: Art kommt ausschließlich in einer bestimmten Gruppe von Vegetationsaufnahmen vor und zugleich enthalten alle Aufnahmen der Gruppe diese Art; 0: Art und Vegetationseinheit sind unabhängig voneinander). Arten mit phi-Werten > 0,25 werden als diagnostische Arten bezeichnet. In zwei getrennten Analysen wurden die beiden Jahre (bei Poolung über die Feuchtestufen) sowie die drei Feuchtestufen (bei Poolung über die Jahre) verglichen. Auf die Differenzierung der Aufnahmegruppen aus den drei Entwicklungsvarianten

wurde verzichtet, da die Auswertungen zur Artenvielfalt und der Ellenberg-Zeigerwerte bislang nur geringe Unterschiede erbrachte.

Ergebnisse

3.1 Artenzahl auf 1, 10 und 100 m²

Die in 2011 nachweisbaren Effekte auf die Artenvielfalt der Vegetation sind abhängig von der Größe der Untersuchungsflächen: Auf den Maßstabsebenen 1 und 10 m² wurde die Artenvielfalt von den drei Faktoren Feuchtestufe, Entwicklungsvariante und Untersuchungsjahr nicht signifikant beeinflusst. Allerdings zeigt die ANOVA jeweils eine signifikante Interaktion zwischen Untersuchungsiahr und Feuchtestufe (F = 7.2; p < 0.01 und F = 4.3; p < 0.05 für 1 und 10 m²): Während die Artenvielfalt auf den Flächen der Feuchtestufen "feucht" und "nass" von 2009 nach 2011 leicht angestiegen ist, fällt sie auf den Flächen der Feuchtestufe "frisch" leicht ab (Abb. 1). Auf der Maßstabsebene von 100 m² zeigte weder Feuchtestufe, Entwicklungsvariante, Untersuchungsjahr noch eine der Interaktionen zwischen den Faktoren einen signifikanten Finfluss auf die Artenvielfalt

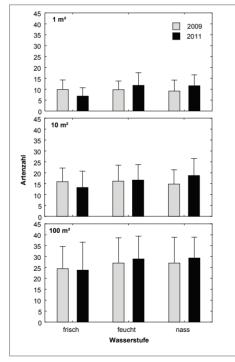


Abb. 1: Abhängigkeit der Artenzahl (Mittelwert ± Standardabweichung) der Gefäßpflanzen in den Jahren 2009 und 2011 auf 1, 10 und 100 m² großen Untersuchungsflächen von dem Faktor "Feuchtestufe" ("frisch", "feucht" und "nass").

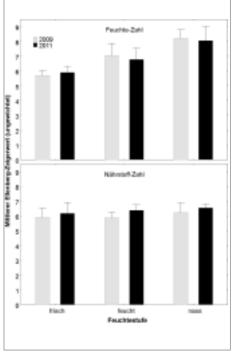


Abb. 2: Mittlere ungewichtete Zeigerwerte nach ELLENBERG ET AL. (1992) der Vegetation (Maßstabsebene 10 m²) für Feuchte und für Stickstoff in den Jahren 2009 und 2011 in Abhängigkeit der Feuchtestufen ("frisch", "feucht" und "nass"). Dargestellt sind Mittelwert ± Standardabweichung.

Faktor			ihr		Varane mat	
Kategorie		2009	2011		n fleuicht	
Anzahi Aufnahmen		54	54	36	36	36
Sippon, die stark abgenommer	n haben					
Arrhenatherum elatius	16	31	١.	47	٦.	
Feetuca rubra	19	33	4	42	11	3
Dacitylis glomerata	13	24	2	36		3
Gelium elbum	11	20	2	31	3	
Glyceria flutane	17	26	6		31	19
Festuce arundineces	6	13		6	14	
Sippen, die stark zugenommer	n haben					
Chanopodium album agg.	26	2	50	14	42	22
Chenopodium polyspermum	30	6	54	17	39	33
Rorigga amphibia	12		24		11	25
Tripleurospermum perforatum	30	11	48	17	36	36
Rorigga x anceps	11		22		14	19
Persicaria lapethitolia	20	7	33	6	28	28
Diagnostische Sippen der frisc	hon Standi	veto				
Festuca pratensis	10	13	7	31	٦.	
Pos praterais app.	20	20	20	50	111	
Lathyrus pratensis	21	31	11	50	8	6
Allopecurus pratensis	56	50	52	97	58	11
Agrostis capillaris	31	41	20	58	30	
Hypericum perforatum	6	6	6	17	-	
Censtium holosteoides		15	4	22	6	
Galeopsis bifida	ě	12	11	17	"	
Rosa spec.	5	4	6	14	1 .	
Glechoma hederacea	13	15	11	28	11	
Urtica dioisa	9	7	11	22	3	à
Galium verum	ě	11	2	17		3
Gallum x pomennicum	2	4	-	6		
Poa trivialis	27	31	22	47	28	6
Elymus repens	61	65	57	92	67	25
Rumex thereiflorus	3	2	4	0.0		-
Cratzegus monogyna	3	6	7	8		
Diagnostische Sippen der feuc Rumex crispus	men atano 20	one 22	19	3	44	14
Leontodon autumnella	20	9	9	3	25	3
	18	24	11		36	17
Alopecurus geniculatus	4	8	2		11	17
Achillea ptarmice Euphorbis peplus	4	_	7		111	٠.
Junous articulatus	3	6			8	٠.
Pulicaria vulgaria	ě	9	11	3	14	
Matricaria recutita		4	15	6	19	à
	-		10		10	, ,
Diagnostische Sippen der nass						
Garex riparia	13	11	15		477	39
Oenenthe aquatica	24	13	35		17	56
Glyceria maxima	17	17	17		11	39
Bidens frondosa	17	15	19	1	11	39
Bidens tripartita	34	24	44	3	36	84
Eleocharis sp.	23	26	20	,	22	47
Persicaria amphibia	12	11	13		8	28
Carex sulpine	11	13	9	В	-	25
Rumex maritimus		2	15		6	19
Alisma lanceolatum	8	7	9		6	19
Iris pseudacorus	4	6	2			11
Bidens connata	4		7	,		11
Stollaria palustris	18	22	13		19	33
Persicaria maculosa	12	7	17		11	25
Phalaris arundinacea	36	33	39	8	42	58
Carex acuta	6	7	4		3	14
Xanthium albinum	6	4	7		3	14

3.2 Ellenberg-Zeigerwerte für F und N

Der ungewichtete, mittlere Ellenberg-Zeigerwert für Feuchte (F-Zahl) zeigt höchst signifikante Unterschiede zwischen den Feuchtstufen "frisch" (5,6), "feucht" (7,0) und "nass" (8,0; F=7,01; p<0,001), während keine Effekte der Faktoren Entwicklungsvariante und Untersuchungsjahr zu verzeichnen sind (Abb. 2). Der mittlere, ungewichtete Ellenberg-Zeigerwert für Stickstoff (N-Zahl) zeigt kaum Unterschiede und schwankt zwischen 5,8 und 6,3. Allerdings sind die mittleren N-Zahlen im Jahr 2011 signifikant höher als im Jahr 2009 (F=41,3; p<0,001).

3.3 Diagnostische Arten

Die Tabelle 1 zeigt, dass es sich im Gebiet um typisches Auengrünland frischer bis nasser Standorte handelt, dominiert von Süß- und Sauergräsern und durchsetzt mit einzelnen Störzeigern und Gehölzen. Die drei Feuchtestufen sind floristisch gut charakterisiert, wobei die beiden Endpunkte des Feuchtegradienten logischerweise mehr diagnostische Arten als die intermediären Standorte hatten.

Die Analyse der Veränderungen zwischen 2009 und 2011 erbrachte je sechs Arten mit hohen phi-Werten, die also stark ab- oder zugenommen haben. Bei den vier insgesamt am stärksten zurückgegangenen Arten handelt es sich um Sippen, die ihren Schwerpunkt im frischen (bis trockenen) Grünland haben: Arrhenatherum elatius, Festuca rubra, Dactylis glomerata und Galium album. Besonders drastisch war der Rückgang beim Glatthafer (Arrhenatherum elatius), der 2009 noch in fast allen Aufnahmeflächen der frischen Standorte vorkam und 2011 komplett aus diesen verschwunden war. Die beiden anderen deutlich zurückgegangenen Arten (Glyceria fluitans, Festuca arundinacea) weisen eine gewisse Häufung (aber phi < 0,25) im Feuchten auf.

Bei den sechs Sippen mit einer starken Zunahme handelt es sich um vier weitverbreitete Einjährige (*Chenopodium album* agg., *Chenopodium polyspermum*, *Tripleurospermum perforatum*, *Persicaria lapathifolia*) sowie zwei ausdauernde Hydrophyten (*Rorippa amphibia*, *R. x anceps*). Alle sechs Sippen haben sich vor allem in den beiden tiefer gelegenen Feuchtestufen ausgebreitet, *R. amphibia* sogar mit deutlicher Prevalenz für die nasse Feuchtestufe.

4 Diskussion

Obwohl in zahlreichen Arbeiten nachgewiesen wurde, dass Muster der Artenvielfalt von der räumlichen Maßstabsebene abhängig sind (z. B. Braun-Blanquet 1913; vgl. Dengler 2012), wurden diese Kenntnisse bislang selten in Monitoringprogramme integriert. Zumeist werden Änderungen der Vegetation lediglich auf einer räumlichen Maßstabsebene erfasst. Die hier genutzte Methode von ineinander geschachtelten Dauerflächen unterschiedlicher Größe (Dengler 2009) ist geeignet, um die Maßstabsabhängigkeit von Diversitätsmustern zu berücksichtigen. Tatsächlich zeigen die Ergebnisse, dass die zeitliche Veränderung der Artenvielfalt im Untersuchungszeitraum 2009 bis 2011 von der betrachteten Flächengröße abhängt: Während auf 1 und 10 m² großen Flächen die Artenzahl an den Feuchtestufen "feucht" und "nass" angestiegen ist, zeigte sich diese Veränderung auf einer Flächengröße von 100 m² nicht.

Weiterhin zeigen die Ergebnisse bereits zwei Jahre nach der Rückdeichung eine deutliche Reaktion der Vegetation: Insgesamt sind ehemals vor allem in der Feuchtestufe "frisch" regelmäßig vorkommende, aber überflutungsempfindliche Grünland-Arten (z. B. Arrhenatherum elatius, Festuca rubra) zwischen 2009 und 2011 deutlich zurückgegangen. Gleichzeitig hat sich der Anteil einjähriger Arten vor allem in den Feuchtestufen "feucht" und "nass" erhöht, in denen durch länger anhaltende Überflutung Störstellen entstanden sind. Einjährige können aufgrund ihrer oft vergleichsweise guten Ausbreitungsfähigkeit und ihres kurzen Lebenszyklus diese Störstellen rasch besiedeln. NABEL (in diesem Band) konnte zeigen, dass Diasporen von einjährigen Arten in abgelagerten Spülsäumen im Rückdeichungsgebiet Lenzen einen großen Anteil des Gesamtaufkommens an Diasporen ausmachen (vgl. auch Vogt et Al. 2004).

Schließlich wird deutlich, dass die im Rückdeichungsgebiet implementierten Entwicklungsvarianten bislang keinen starken Unterschied der Vegetation auf den Dauerflächen hervorgerufen haben. Es wurden keine Unterschiede in der Artenvielfalt festgestellt und auch in einer Korrespondenzanalyse (Ergebnisse nicht dargestellt) separiert sich die Artenzusammensetzung der Vegetation lediglich hinsichtlich der Feuchtestufen und der Untersuchungsjahre, nicht aber hinsichtlich der Entwicklungsvarianten. Dieses zunächst überraschend erscheinende Ergebnis lässt sich darauf zurückführen, dass zum einen aufgrund unterschiedlicher Ereignisse (u. a. Überflutung und Eisschur, Sommertrockenheit, Wildverbiss, Schädlingsbefall) vor allem in den jüngeren Auwaldpflanzungen eine hohe Mortalität aufgetreten ist (vgl. Purps in diesem Band). Diese hat dazu geführt, dass sich dort bislang keine dichten Gehölzstrukturen etabliert haben und demzufolge die aktuelle Vegetation auch weiterhin von ruderalisierten Grünlandbeständen geprägt ist. Weiterhin wurde die halboffene Weide auf Grund von Zaunschäden nach Überflutungen zunächst auf die Fläche östlich des Gandower Fährdamms beschränkt. Es bleibt abzuwarten, inwiefern sich die angestrebten Entwicklungsziele (schnellere Etablierung von Auwäldern, Entwicklung und Erhaltung von auentypischen Offenlandlebensräumen) tatsächlich erreichen lassen.

Abschließend ist festzuhalten, dass verlässliche Aussagen über Vegetationsveränderungen nach Rückdeichung natürlich längere Untersuchungszeiträume erfordern. Durch die Einrichtung, exakte Einmessung, dauerhafte Markierung sowie die ersten Aufnahmen der Untersuchungsflächen wurde jedoch eine gute Basis für ein längerfristiges Monitoring gelegt. Es ist geplant, die hier vorgestellten Erfassungen im zweijährigen Turnus fortzusetzen. Hierbei ist gerade die Integration der Untersuchungen in eine regelmäßig wiederkehrende universitäre Lehrveranstaltung ein erfolgsversprechender Ansatz.

Danksagung

Ein herzlicher Dank gilt allen Studierenden und den weiteren Lehrenden (Veit Hennig, Alexander Gröngröft, Claudia Mählmann) des Moduls "Ökologie Terrestrischer Lebensräume" der Universität Hamburg im Sommersemester der Jahre 2009 und 2011. Weiterhin bedanken wir uns bei dem Team des Auenökologischen Zentrums Burg Lenzen sowie bei der Biosphärenreservatsverwaltung des Landes Brandenburg für die sehr gute Zusammenarbeit.

Literatur

- Braun-Blanquet, J. (1913). Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Neue Denkschriften der Schweizerischen Naturforschenden Gesellschaft 48: S. 1–347.
- CHYTRÝ, M.; TICHÝ, L.; HOLT, J., und Z. BOTTA-DUKÁT (2002): Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: S. 97–90.
- DENGLER, J. (2009): A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecological Indicators 9: S. 1169–1178.
- DENGLER, J. (2012): Skalenabhängigkeit von Biodiversität von der Theorie zur Anwendung. Forschungsbericht zur kumulativen Habilitation. Fachbereich Biologie der Universität Hamburg, Hamburg. URL: http://www.biodiversity-plants.de/downloads/JD157.pdf.
- ELLENBERG, H., WEBER, H.E., DÜLL, R., WIRTH, W., WERNER, W. und D. PAULIBEN (1992): Zeigerwerte von Pflanzen Mitteleuropas. Scripta Geobotanica 18.
- GRÄFE, U., BEYLICH, A. und M. HAPE (2002): Untersuchung zur Kongruenz von Typen der Bodenbiozönose und der Vegetation in einem Auengebiet. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 99: S. 185–186.
- LONDO, G. (1975): Dezimalskala für die vegetationskundliche Aufnahme von Dauerquadraten. In: Schmidt, W. (Hrsg.) Sukzessionsforschung, Berichte des Internationalen Symposiums der IVV Rinteln 1973: S. 613–617.
- MONTENEGRO, H., HOLFELDER, T. und B. WAWRA (1999): Untersuchung der Wechselwirkungen zwischen Oberflächengewässer und Grundwasser in Flussauen. Auenreport Sonderband 1: S. 27–40.
- Müller, S., Kalz-Kaprolat, J. und H. Wilkens (1999): Vergleich faunistischer Artengemeinschaften in vorund hinterdeichs gelegenen Auenbereichen der Unteren Mittelelbe am Beispiel der Laufkäfer, Spinnen, Heuschrecken und Kleinsäuger. In: Landesanstalt für Großschutzgebiete Biosphärenreservat Flusslandschaft Elbe-Brandenburg (Hrsg.): Ergebnisse des Forschungsvorhabens: Möglichkeiten und Grenzen der Auenregeneration und Auenwaldentwicklung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg). Auenreport Sonderband 1: S. 79–87.
- Purps, J., Damm, C. und F. Neuschulz (2004): Naturschutzgroßprojekt Lenzener Elbtalaue, Brandenburg Auenregeneration durch Deichrückverlegung an der Elbe. Natur und Landschaft 79: S. 408-415.
- SCHOLZ, M., STAB, S., DZIOCK, F. und K. HENLE (2004): Lebensräume der Elbe und ihrer Auen. Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Bd. 4. Weißensee Verlag, Berlin.
- StatSoft, Inc. (2011): Statistica für Windows (Software-System für Datenanalyse), Version 10.0, Tulsa, USA.
- Vogt, K., Rasran, L. und K. Jensen (2004): Water-borne seed transport and seed deposition during flooding in a small river-valley in Northern Germany. Flora 199: S. 377–388.
- WISSKIRCHEN, R. und H. HAEUPLER (1998): Standardliste der Farn- und Blütenpflanzen Deutschlands, Verlag Eugen Ulmer, Stuttgart.

Thomas Heinicke, Biosphärenreservatsverwaltung Flusslandschaft Elbe-Brandenburg, Rühstädt

1 Einleitung

Das Projekt "Deichrückverlegung Lenzen" ist zum gegenwärtigen Zeitpunkt die größte fertig gestellte Deichrückverlegung in Deutschland und daher als Referenzobjekt von besonderem wissenschaftlichen Interesse.

Bereits im Vorfeld des Renaturierungsprojektes wurden im Rahmen des BMBF-Projektes "Möglichkeiten und Grenzen der Auenwaldentwicklung und Auenrenaturierung am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg)" Grundlagendaten u. a. zu Flora und Fauna erhoben, die hervorragende Vergleichsmöglichkeiten zu der Situation nach Fertigstellung der Deichrückverlegung ermöglichen. Einen größeren Schwerpunkt bildeten dabei Untersuchungen zur Brut- und Rastvogelfauna, da Vogelarten aufgrund ihrer Mobilität besonders rasch auf sich verändernde Umweltbedingungen reagieren und als Indikatoren für Lebensraum-Änderungen herangezogen werden können.

Die vorliegende Arbeit zeigt anhand verschiedener Datengrundlagen erste Entwicklungstendenzen der Avifauna nach Umsetzung der Deichrückverlegung Lenzen auf.

2 Material und Methoden

Erste systematische Untersuchungen zu Brutvögeln für das gesamte Deichrückverlegungsgebiet liegen aus den Jahren 1997 und 1998 vor (MÜLLER 2000). Im Rahmen des oben genannten BMBF-Projektes wurden flächendeckende Revierkartierungen durchgeführt, die damit den Brutvogelbestand vor Beginn der Auwald-Pflanzungen und vor der Rückdeichung dokumentieren

Noch während der Umsetzungsphase wurden erste Brutvogeluntersuchungen im Jahr 2007 durch MAIERHOFER an den vier Flutmulden durchgeführt, die 2005/2006 neu angelegt wurden. Ab 2008 erfolgten dann jährliche flächendeckende Revierkartierungen (MAIERHOFER 2008, 2009, 2010a, HEINICKE 2011, 2012, unveröffentlicht).

Teilweise wurden diese Kartierungen noch durch laufende Baumaßnahmen beeinflusst, wie die Fertigstellung des Neudeichs im Jahr 2008, die Schlitzung des Altdeichs ab Juni 2009 sowie die Fertigstellung der Altdeichschlitzung im Jahr 2011.

Zusätzlich wurden im Rahmen von Erfolgskontrollen zu Wiesenbrüter-Schutzmaßnahmen auf 5 Teilflächen seit 2000 selektive Revierkartierungen ausgewählter Wiesenbrüter-Arten vorgenommen, deren Ergebnisse aber in der vorliegenden Arbeit nicht näher betrachtet werden.

Zur Vergleichbarkeit der Brutvogeldaten wird als Untersuchungsgebiet das unmittelbare Rückdeichungsgebiet zwischen Neudeich im Norden und Altdeich im Süden definiert.

Die Untersuchungen zu Rastvögeln konzentrieren sich im Wesentlichen auf regelmäßige und systematische Zählungen von im Gebiet auftretenden Wasser- und Watvögeln. Bereits im Zuge des BMBF-Projektes (MÜLLER 2000) wurden in den Wintern 1996/97, 1997/98 und

1998/99 von Oktober bis April in ca. 10-tägigem Abstand an insgesamt 56 Terminen Zählungen durchgeführt. Im benachbarten Vorland Lütkenwisch erfolgten zudem in diesem Zeitraum an 32 Terminen Schlafplatzzählungen. Ergänzend liegen Einzelbeobachtungen von Nichtbrütertrupps aus den Sommerhalbjahren 1997 und 1998 sowie diverse Zufallsbeobachtungen vor.

Zwischen August 2007 und April 2010 wurden dann an insgesamt 33 Terminen (meist zu Monatsanfang und Monatsmitte) erneut Rastvogelzählungen im Rückdeichungsgebiet durchgeführt (MAIERHOFER 2010b). Seit Ende 2010 wurde das Rastvogelmonitoring durch HEINICKE nochmals intensiviert (seither >60 Begehungen) und teilweise im Wochenabstand durchgeführt. Darüber hinaus werden die Rastvögel im Bereich der Deichrückverlegung auf den regelmäßig stattfindenden Zähltouren der Naturwacht (4x in den Sommermonaten jeweils zur Monatsmitte, 15 Zählungen im Winterhalbjahr zwischen Mitte September und Mitte April) erfasst.

3 Ergebnisse

Bereits im Rahmen des BMBF-Projektes wurden im Rückdeichungsgebiet und benachbarten Vorlandgebieten ca. 150 Vogelarten festgestellt, davon 60 Arten als Brutvögel in der eigentlichen Deichrückverlegung (MÜLLER 2000).

Im Rahmen des seit 2007 jährlich stattfindenden Brut- und Rastvogelmonitoring wurden bis Ende 2012 bereits 195 Vogelarten im Bereich der Deichrückverlegung und unmittelbar angrenzenden Gebieten festgestellt, darunter 85 Arten als Brutvögel. Lediglich vier Vogelarten (Uhu, Rebhuhn, Waldschnepfe, Bartmeise), die im Rahmen des BMBF-Projektes registriert wurden (MÜLLER 2000), konnten seit 2007 nicht nachgewiesen werden.

Sowohl die Zahl der nachgewiesenen Brutvogelarten als auch die Gesamtartenzahl haben sich im Zeitraum 2007-2012 im Vergleich zur Situation Ende der 1990er Jahre um jeweils ca. 30% erhöht. Das bislang nachgewiesene Vogelartenspektrum (199 Arten) beträgt knapp 80% aller bislang im Bereich des Biosphärenreservats Flusslandschaft Elbe-Brandenburg nachgewiesenen Arten (mind. 251 Arten, Stand: 2012; Heinicke unveröffentlicht), während die Anzahl festgestellter Brutvogelarten im Bereich der 420 ha Deichrückverlegung sogar die Hälfte des Brutartenspektrums im gesamten Biosphärenreservat (Brandenburg-Teil: 53.333 ha) erreicht.

3.1 Entwicklungstendenzen der Brutvogelfauna

Die Landschaft im Rückdeichungsgebiet war vor Beginn des Naturschutzgroßprojektes "Lenzener Elbtalaue" geprägt durch ein gehölzarmes, von Gräben durchzogenes offenes Grünlandgebiet mit Mahd- und Weidenutzung. Neben den wenigen Gräben waren im Gebiet nur kleine permanente Restgewässer (darunter das Landwehrbrack) sowie eine ausgeprägte Qualmwasserzone mit temporären Wasserflächen unmittelbar nördlich des Altdeichs vorhanden. Nennenswerte Gehölzstrukturen beschränkten sich auf das kleine Eichenwäldchen (= Eichholz) im Westteil des Gebietes, lineare Altbaumbestände an Fährdamm, Rüster Drift und im Westteil der Rückverlegung, verschiedene Einzelbäume sowie wenige neue Auwaldanpflanzungen.

Dementsprechend war die Brutvogelfauna vor Beginn des Rückdeichungsprojektes geprägt von Brutvogelarten der Offen- und Halboffenlandschaften. Waldvogel- sowie Feuchtge-

bietsarten waren dagegen nur in geringem Umfang und mit vergleichsweise wenigen Arten am Brutvogelbestand beteiligt. Insgesamt konnten bei den Kartierungen 1997/1998 60 verschiedene Brutvogelarten (Jahr 1997: 52 Arten in 365 Revieren/Paaren, Jahr 1998: 44 Arten in 389 Revieren/Paaren) festgestellt werden. Lediglich 36 Arten wurden in beiden Jahren als Brutvogelarten nachgewiesen. Die häufigsten Arten waren Ende der 1990er Jahre aufgrund der Habitatausstattung die wiesenbrütenden Arten Feldlerche, Schafstelze, Wiesenpieper und Braunkehlchen sowie Goldammer und Dorngrasmücke als Arten der Halboffenlandschaften.

Mit der Umsetzung des Naturschutzgroßprojektes hat sich die Habitatausstattung des Rückdeichungsgebietes erheblich gewandelt. Durch Neuanlage hinzugekommen sind 4 große Flutmulden von insgesamt ca. 48 ha Größe sowie >130 ha Initialpflanzungen von Weich- und Hartholz-Auwäldern unterschiedlichen Alters und Ausprägung. Zusätzlich wurden ca. 200 ha ehemaliges Grünland schrittweise aus der Nutzung genommen, sodass ab dem Jahr 2011 nur noch etwa 60 ha als halboffenene Weidelandschaft durch Dauerbeweidung mittels einer kleinen Pferdeherde entwickelt werden. Durch Kappung der früher das Gebiet entwässernden Gräben kommt es insbesondere nach Hochwässern zu einem lang andauernden Wasserrückhalt im Rückdeichungsgebiet, wodurch zusätzlich großflächig Vernässungsflächen mit Seggenriedern und Röhrichten entstanden.

Dieser starke Landschaftswandel innerhalb weniger Jahre hatte sehr deutliche Auswirkungen auf die Brutvogelfauna. Bereits 2008 konnten bei der ersten flächendeckenden Kartierung 726 Reviere von 66 Arten erfasst werden, was einer Verdopplung der Revierzahl gegenüber dem Zustand vor Durchführung des Naturschutzgroßprojektes entspricht. Gleichzeitig konnten 21 neue Arten als Brutvögel im Gebiet festgestellt werden, darunter 15 Wasser- und Watvogelarten. Im Folgejahr konnten dann zwar nur 654 Reviere, dafür aber 68 Arten als Brutvögel festgestellt werden. Auch in den darauf folgenden Jahren wurde ein ähnlich hohes Niveau festgestellt, darunter 688 Reviere von 64 Arten im Jahr 2010.

Bis auf 4 Vogelarten (Mehlschwalbe, Feldsperling, Girlitz und Großer Brachvogel) konnten, im Vergleich zur Ausgangssituation vor der Rückdeichung, alle anderen Brutvogelarten seit 2008 in mindestens einem Jahr bestätigt werden. Neu nachgewiesen wurden dagegen 29 Brutvogelarten, von denen sich aber bislang lediglich 9 Arten (Graugans, Nilgans, Knäkente, Schnatterente, Wachtelkönig, Schilfrohrsänger, Weidenmeise, Sperbergrasmücke und Grauammer) dauerhaft zu etablieren scheinen.

Dagegen wurden insbesondere mehrere Wasser- und Watvogelarten nur kurzzeitig als Brutvögel festgestellt. Dies betrifft z. B. die ausschließlich im Jahr 2008 nachgewiesenen Arten Sandregenpfeifer, Stelzenläufer, Flussseeschwalbe und Schwarzhalstaucher oder den nur in den Jahren 2007 und 2008 brütenden Säbelschnäbler. Alle diese Arten profitierten von einer Sondersituation mit Rohbodenstandorten an den Flutmulden und einem "Badewanneneffekt" mit ausgedehnten Vernässungen und Flachwasserzonen, der durch Fertigstellung des Neudeichs und fehlender Schlitzung des Altdeiches entstand.

Mit der Schlitzung des Altdeiches im Sommer 2009 wurde dieser "Badewanneneffekt" aufgehoben. Damit verschlechtern sich die Brutbedingungen für Wasser- und Watvögel durch Zuwachsen der Rohbodenflächen, fortschreitende Sukzession der Offenflächen sowie rascheres Absinken der Wasserspiegel nach dem Frühjahrshochwasser zunehmend, was sich durch ei-

Art	1997	1996	2008	2009	2010	2011
Höckerschwan	1		2	2	2	3
Stockente	2	4	8	7	10	5-10
Schnatterente			8	7	9	1.3
Knäkente			14	15	11	6-10
Reiherente	1			3	2	
Blässhuhn	1		20	13	14	3
Brandgans		- 1	5	3	5	3-5
Graugans.			15	27	21	20
Nilgens			2	2	2	
Wassenalle			6	2		
Haubentaucher			7	- 6	1	
Zwergtaucher			5	2	2	
Schwarzhalstaucher			2			
Kranich	1		3	2	4	4

Tab. 1: Brutbestandsentwicklung von Wasservogelarten im Deichrückverlegungsgebiet Lenzen.

Art	1997	1998	2008	2009	2010	2011
Kiebitz	4	4	21	18	17	12
Bekassine	3	2	20	13	18	3
Flutiutertäuter	1		3	- 4	9	
Großer Brachwogel		1				
Rotschenkel		1	7	3	5	1
Säbelschnäbler			2			
Stelpenbufer			1			
Austernfischer			2	1	2	
Flussregenpfeifer		1	10	9	13	- 6
Sandregenpfeifer			2			
Flußseeschwelbe			2			
Lachmöwe			18	1	4	

Tab. 2: Brutbestandsentwicklung von Larolimikolen im Deichrückverlegungsgebiet Lenzen.

Art	1997	1998	2008	2009	2010	2011
Feldlerche	76	127	89	84	76	ca. 60
Wiesenpieper	31	34	24	21	10	15-20
Braunkehichen	26	31	19	21	15	ca.20
Schafstelze	41	29	66	62	68	>70
Rohrammer	15	18	34	42	45	>60
Schilfrohrsänger			7	- 6	17	ca.10
Domgrasmücke	20	12	26	19	13	10-15
Klappergrasmücke	4	6	13	11	30	≻20
Sperbergrasmücke			3	2	7	5-10
Neurtöter	8	B	10	15	10	10-15

Tab. 3: Brutbestandsentwicklung ausgewählter Kleinvogelarten im Deichrückverlegungsgebiet Lenzen.

nen Rückgang der Arten- und Revierzahlen deutlich bemerkbar macht (siehe Tabellen 1 und 2). Lediglich im Jahr 2010 bestanden durch eine Hochwasserwelle Ende Mai/ Anfang Juni nochmals ähnliche Wasserverhältnisse wie in den Vorjahren, wogegen in den Jahren 2011 und 2012 das rasche Absinken des Wasserspiegels nur wenigen Wasser- und Watvogelarten geeignete Brutbedingungen bot und mehrere Arten sogar aufgrund der raschen Austrocknung ihr Brutgeschäft abbrachen.

Bei den Kleinvogelarten ist die Bestandsentwicklung recht unterschiedlich. Während einzelne Arten der Offenlandschaft abgenommen haben (z. B. Feldlerche, Wiesenpieper, Braunkehlchen), haben insbesondere Feuchtgebietsarten (z.B. Schafstelze, Rohrammer und Schilfrohrsänger) sowie Arten der Halboffenlandschaft (z.B. Klapper- und Sperbergrasmücke, Neuntöter) deutlich zugenommen.

Die deutlichste Abnahme ist bei der Feldlerche zu verzeichnen, die in extensiv genutzten Grünlandflächen ihre höchsten Dichten erreicht und v. a. durch die Nutzungsaufgabe und die damit verbundene Sukzession der Grünlandflächen negativ betroffen ist. Dagegen sind bei Wiesenpieper und Braunkehlchen nur leichte Bestandsrückgänge feststellbar, die möglicherweise aber auch mit überregionalen Bestandsrückgängen zusammenhängen. Von den Sukzessions- bzw. Vernässungsflächen profitieren die Arten Schafstelze, Rohrammer und Schilfrohrsänger. Insbesondere die Schafstelze hat sich mittlerweile zur häufigsten Kleinvogelart im Gebiet entwickelt.

Ebenfalls positive Bestandsentwicklungen sind bei gebüschbrütenden Vogelarten, wie verschiedenen Grasmücken-Arten und beim Neuntöter, festzustellen, die ganz erheblich von den zahlreichen Auwald-Initialpflanzungen im Gebiet profitieren.

Eine Analyse der 35 regelmäßig im Gebiet brütenden Kleinvogelarten ergab lediglich für 3 Arten eine deutlich negative Bestandsentwicklung (Feldlerche, Bachstelze, Stieglitz), während für 2 weitere Arten leichte Abnahmen feststellbar sind (Braunkehlchen, Wiesenpieper). Dagegen haben sich 18 Arten positiv im Bestand entwickelt, während für weitere 12 Arten stabile Brutbestände feststellbar sind.

Überraschend ist dagegen das Fehlen einzelner erwartbarer Brutvogelarten, wie z. B. die völlige Abwesenheit des Zaunkönigs. Ebenso auffällig ist mittlerweile das Fehlen von Greifvogelbruten im unmittelbaren Rückdeichungsgebiet. Die früher anwesenden Brutvogelarten Mäusebussard und Turmfalke sind in den letzten Jahren verschwunden, während Rot- und Schwarzmilan bislang nur sporadisch gebrütet haben. Selbst das alte Eichenwäldchen im Westteil der Deichrückverlegung beherbergt aktuell keine Greifvogelbruten, wird allerdings regelmäßig von diversen immaturen Seeadlern sowie dem Seeadler-Paar im benachbarten niedersächsischen Elbholz als Einstand genutzt.

Insgesamt ist die Brutbestandsentwicklung als ausgesprochen positiv anzusehen, da die Brutvögel sowohl hinsichtlich Artenzahl als auch insbesondere Revierzahl deutlich zugenommen haben. Vor allem durch die Neu- bzw. Wiederbesiedlung des Gebietes durch verschiedene Feuchtgebietsarten entwickelt sich das Brutvogelspektrum zunehmend in Richtung typischer Auen-Brutvogelgemeinschaften (siehe FLADE 1994). Lediglich für Waldarten sind erwartungsgemäß längere Entwicklungszeiträume abzuwarten, da viele der Pflanzungen noch nicht über Initialstadien hinausgekommen sind.

Art	Winter	Heimzug	Wegzug	Art	Winter	Heimzug	Wegzug
Blüssgans	400	9	56	Kormoran	15	134	235
Tundrasaatgans	65	65	40	Blässhuhn		150	175
Graugans	128	100	1.200	Kranich	1	250	60
Höckenschwen	55	140	53	Kielsitz	83	700	510
Singschwan	120	209	12	Bekassine	-	104	80
Stockente	630	4.359	850	Großer Brachvogel		9	18
Philippia	943	1.319	177	Kampfäufer	-	76	15
SpielSente	10	344	17	Bruchwassertäufer	-	54	16
Schnatterente	18	219	130	Waldwasserläufer	-	26	39
Löffelente	-	240	451	Grünschenkel	-	13	- 6
Krickente	166	2.148	1.520	Flussregerpfeifer	-	41	32
Knäkente	-	18	21	Alpenstrandäufer	-	3	31
Tafelente	76	626	26	Trauerseeschwalbe		38	
Reiherente	39	167	57	Lachmöwe	205	550	77
Siberreiher	84	70	91	Schwarzstorch	-	1	12
Grauseiter	7	28	37	Securior	- 6	6	10

Tab. 4: Rastmaxima ausgewählter Feuchtgebietsarten in der Deichrückverlegung Lenzen im Zeitraum 2008–2012 (Zähldaten Heinicke; Maierhofer 2010b).

3.2 Entwicklungstendenzen der Rastvogelfauna

Das Rückdeichungsgebiet vor Beginn des Naturschutzgroßprojektes wurde dominiert von einem großflächigen, gehölzarmen und dadurch weitgehend offenen Grünlandgebiet mit Mahd- und Weidenutzung. Dementsprechend war das Rastvogelspektrum vergleichsweise eingeschränkt und wurde dominiert durch jeweils tausende rastende Gänse (Grau-, Bläss- und Saatgans) und Feldlimikolen (v. a. Kiebitze) sowie zahlreiche Greifvögel, die auf den Grünlandflächen der Nahrungssuche nachgingen (MÜLLER 2000).

Abgesehen von den genannten Arten waren im eigentlichen Rückdeichungsgebiet aufgrund der wenigen Gewässer (Gräben, kleine permanenten Restgewässer) und einer lediglich bei Hochwässern flach überstauten Qualmwasserzone am Altdeich von den klassischen Wasserund Watvogelarten nur wenige Arten in niedrigen Individuenzahlen anzutreffen (MÜLLER 2000). Die Mehrzahl der Wasser- und Watvogelarten konzentrierte sich vor Durchführung der Rückdeichung vielmehr in den Buhnenfeldern sowie auf der Elbe selbst, bzw. bei Hochwasser auf den überfluteten Vorländern des Werder Lütkenwisch, des Pappelwerder und des Lenzer Werder.

Die Situation für Rastvögel hat sich mit der Durchführung des Naturschutzgroßprojektes grundlegend gewandelt, da einerseits mit den 4 neuangelegten Flutmulden auf 48 ha neue Gewässer unterschiedlicher Tiefenausprägung entstanden, andererseits durch Anlage von Auwald-Initialpflanzungen und großflächiger Nutzungsauflassung viele der zuvor attraktiven Rasthabitate für Gänse und Feldlimikolen verschwanden. Zudem sind bei Hochwasser größere Anteile der Deichrückverlegung überflutet und stellen dann je nach Stärke der Überflutung durch das Entstehen ausgedehnter Vernässungsflächen und großflächig (flach) überstauter Bereiche ideale Rastvogellebensräume für diverse Wasser- und Watvogelarten dar.

Dementsprechend hat sich ein deutlicher Wandel in den Rastvogelgemeinschaften vollzogen. Die früher im Rückdeichungsgebiet in großer Zahl auftretenden Gänse und Kiebitze sind aufgrund des Fehlens geeigneter Nahrungshabitate bis auf gelegentliche kleine Rasttrupps größtenteils verschwunden und werden jetzt vorrangig auf angrenzenden Grünlandgebieten im Raum Lenzen-Gandow, Wustrow sowie auf dem Werder Lütkenwisch angetroffen.

Dagegen bieten die Flutmulden in Abhängigkeit vom Wasserstand bzw. die bei Hochwasser flach überstaute Deichrückverlegung während der Zugzeiten insbesondere für Schwimmenten (z.B. Krick-, Stock- und Pfeifente) und Watvögel, aber auch für weitere Wasservogelarten hervorragende neue Rastmöglichkeiten (siehe Tab. 4). Für Schwimmenten hat sich die Deichrückverlegung mittlerweile zu einem der bedeutendsten Rastgebiete auf dem Heim- und Wegzug an der Unteren Mittelelbe entwickelt. Gleiches gilt für die feuchtgebietsgebundenen Watvögel, für die die Rückverlegung das einzige nennenswerte Rastgebiet im gesamten Biosphärenreservat Flusslandschaft Elbe-Brandenburg darstellt.

Zusätzlich zu den Tagesrastbeständen werden die Flutmulden von mehreren Arten als neue Schlafplätze genutzt. Während die Gänse (bislang bis 1.500 Vögel) vorrangig die östliche Flutmulde (bei Hochwasser auch den Zentralteil) nutzen, bevorzugen Schwäne (Sing- und Höckerschwan) die Flutmulden im Zentral- und Westteil des Gebietes, nutzen zeitweise aber auch den bei Hochwasser flach überstauten Lenzer Werder zum Nächtigen. Zeitweise benutzen auch Kraniche während der Herbstrast die Flutmulden als Schlafplatz. Generell besteht aber ein intensiver Austausch mit bereits früher bestehenden Schlafplätzen auf dem Werder Lütkenwisch und am Bösen Ort, wobei die jeweilige Nutzung durch Wasserstände, Witterung und Störungen beeinflusst wird. Bislang nur kurzzeitig wurden zudem kleine Schlafplatzansammlungen von Kormoranen und Silberreihern im Eichenwäldchen festgestellt.

Ebenfalls neu ist die Etablierung von sommerlichen Sammelplätzen von Nichtbrüterbeständen, v.a. beim Kranich und beim Schwarzstorch. Dagegen nutzt die Graugans die Deichrückverlegung (hier v. a. die östliche Flutmulde) im Juli bis September als Sommerrastplatz.

Generell lässt sich für Rastvögel bislang feststellen, dass die Deichrückverlegung mit den neu geschaffenen Feuchtlebensräumen einen ausgesprochen wertvollen Lebensraumkomplex darstellt, der sich innerhalb kürzester Zeit zu einem der bedeutendsten Rastplätze für Wasserund Watvögel an der Unteren Mittelelbe entwickelt hat. Durch fortschreitende Sukzession und das Aufwachsen der Initialpflanzungen werden sich künftig sicherlich weitere Änderungen in den Rastvogelgemeinschaften ergeben, aber zumindest kurz- bis mittelfristig ist von einem Fortbestand der jetzigen Rastvogellebensräume auszugehen.

4 Fazit

Insgesamt weisen die Untersuchungen, sowohl bei den Brut- als auch bei den Rastvögeln, auf eine sehr rasche Reaktion der Vogelwelt auf die veränderten Lebensraumbedingungen durch die Rückdeichung hin. Erste Untersuchungsergebnisse zeigen eine deutliche qualitative und quantitative Zunahme der Artengemeinschaften von Brut- und Rastvögeln, die sich mittlerweile bereits deutlich vom Zustand vor Beginn der Rückdeichung unterscheiden und sich in Richtung typischer Vogelgemeinschaften dynamischer Flussauen entwickeln. Um diese in der Größenordnung in Deutschland bislang einmaligen Entwicklungsprozesse weiter verfolgen zu können, sollte ein Monitoring der Avifauna auch in der Zukunft unbedingt weiter fortgesetzt werden.

Literatur

- FLADE, M. (1994): Die Brutvogelgemeinschaften Mittel- und Norddeutschlands. Grundlagen für den Gebrauch vogelkundlicher Daten in der Landschaftsplanung. IHW-Verlag, Eching, 879 S.
- MAIERHOFER, J. (2008): Ergebnisse des Brutvogelmonitorings im Rückdeichgebiet bei Lenzen 2008 innerhalb des Naturschutzgroßprojektes Lenzener Elbtalaue. Unveröffentl. Gutachten im Auftrag des Trägerverbunds Burg Lenzen (Elbe) e.V. und des Landesumweltamtes Brandenburg, 19 S.
- MAIERHOFER, J. (2009): Ergebnisse des Brutvogelmonitorings im Rückdeichgebiet bei Lenzen 2009 innerhalb des Naturschutzgroßprojektes Lenzener Elbtalaue. Unveröffentl. Gutachten im Auftrag des Trägerverbunds Burg Lenzen (Elbe) e.V. und des Landesumweltamtes Brandenburg, 25 S.
- MAIERHOFER, J. (2010a): Ergebnisse des Brutvogelmonitorings im Rückdeichgebiet bei Lenzen 2010 innerhalb des Naturschutzgroßprojektes Lenzener Elbtalaue. Unveröffentl. Gutachten im Auftrag des Trägerverbunds Burg Lenzen (Elbe) e.V. und des Landesumweltamtes Brandenburg, 28 S.
- MAIERHOFER, J. (2010b): Zugvogelmonitoring im Lenzener Rückdeichgebiet August 2007 bis April 2010. Unveröffentl. Gutachten im Auftrag des Trägerverbunds Burg Lenzen (Elbe) e.V. und des Landesumweltamtes Brandenburg, 22 S.
- MÜLLER, S. (2000): Möglichkeiten und Grenzen der Auenwaldentwicklung und Auenregeneration am Beispiel von Naturschutzprojekten an der Unteren Mittelelbe (Brandenburg), Endbericht Teilprojekt 5: Zoologie, Teil II. Säugetiere (*Mammalia*), Vögel (*Aves*), Laufkäfer (*Coleoptera: Carabidae*), 177 S.

Die Bedeutung der Flutmulden der Lenzener Elbtalaue für die Flussfischgemeinschaft

Wolf-Christian Lewin, Erik Fladung, Institut für Binnenfischerei e.V., Potsdam-Sacrow

1 Einleitung

Große Tieflandflüsse sind nahezu weltweit durch Abflussregulation, Begradigung und Querverbauung modifiziert und durch Eindeichung von der umgebenden Flussaue getrennt (AARTS ET AL. 2004). Die Flussfischfauna ist aber in erheblichem Maße auf die Verbindung zwischen Hauptstrom und Nebengewässern angewiesen. Auen- bzw. Nebengewässer bieten v.a. phytophilen Fischarten, darunter auch etlichen geschützten Kleinfischarten wie Bitterling oder Schlammpeitzger, geeignete Lebensräume. Auch wechseln viele Flussfischarten im Verlauf ihres Lebenszyklus zwischen Hauptstrom, Uferhabitaten und Nebengewässern. Letztere bieten Ruheplätze über die Wintermonate (FLADUNG 2002a, HEERMANN und BORCHERDING 2006) und Zuflucht während Hochwasserereignissen (BELL ET AL. 2001). Zudem weisen sie häufig Makrophytenbestände auf, die phyto- und phyto-lithophilen Fischarten als Laichsubstrat dienen (BOR-CHERDING ET AL. 2002). Flache überströmte Sand- und/oder Kiesbänke in Nebengewässern werden von lithophilen Flussfischen zum Laichen genutzt (ALLOUCHE 2002). Fischlarven und Jungfische finden in den Nebengewässern Schutz vor Verdriftung während der frühsommerlichen Hochwasserereignisse (Pont und Nicolas 2001) sowie Nahrung und Schutz vor Räubern (LEWIN ET AL. 2004, SMOKOROWSKI und PRATT 2007). Meist ist die Wassertemperatur dort höher und das Nahrungsangebot reichhaltiger als im Hauptstrom (RECKENDORFER ET AL. 1999, NUNN ET AL. 2007).

In den letzten Jahrzehnten hat sich zunehmend die Erkenntnis durchgesetzt, dass die Verbindung von Hauptstrom und Flussaue für die ökologische Funktionalität eines Fließgewässers von erheblicher Bedeutung ist. Gleichzeitig fordert die Europäische Wasserrahmenrichtlinie die Entwicklung und Umsetzung von Maßnahmenprogrammen, um die ökologischen Defizite der Oberflächengewässer zu beheben. Vor diesem Hintergrund wurde im Biosphärenreservat Flusslandschaft Elbe-Brandenburg ein ca. 420 ha großes Gebiet wieder an das Hochwasserregime der Elbe angeschlossen. In dem Areal entstanden ca. 48 ha große, permanent wasserführende Flutmulden, die ab einem Pegelstand von 365 cm am Pegel Lenzen, der v.a. während der Frühjahrsmonate regelmäßig erreicht bzw. überschritten wird (Abb. 1 und 2), an den Hauptstrom der Elbe angeschlossen sind. Im Einstrombereich der Flutmulden wurden Kiesbänke angelegt. Ab einer Abflussmenge der Elbe von >1.500 m³/s wird das Gebiet direkt durchströmt.

Die vorliegende Arbeit stellt die Ergebnisse zweier Befischungen dar, die im Herbst 2009 (Statuserhebung vor Flutung) und im Sommer 2010 (Bestandsaufnahme nach Flutung) in zwei der Flutmulden durchgeführt wurden und diskutiert diese im Hinblick auf das naturschutzfachliche Ziel der Wiederherstellung einer funktionsfähigen Auenlandschaft.

2 Material und Methoden

2.1 Das Projektgebiet

Die Lenzener Elbtalaue liegt im Bereich der Mittleren Elbe im Landschaftsraum "Untere Mittelelbe-Niederung". Menschliche Eingriffe haben die natürliche Auendynamik weitgehend verändert und die Strukturvielfalt des Flusssystems erheblich reduziert. Viele Neben- und Kleingewässer sind verloren gegangen oder wurden vom Hauptstrom dauerhaft isoliert (GOHLISCH ET AL. 2005). Trotz dieser Eingriffe ist die Elbe einer der wenigen Flüsse Mitteleuropas, in denen der charakteristische Wechsel von Hoch- und Niedrigwasser erhalten geblieben ist. Im Bereich der Mittleren Elbe gibt es derzeit noch ca. 1.025 km² rezente Aue, die durch die charakteristische Abflussdynamik beeinflusst wird und einer vielfältigen Flora und Fauna Lebensraum bietet. Die Untere Mittelelbe-Niederung ist ein aus naturschutzfachlicher Sicht wertvolles Gebiet und große Flächenanteile wurden deshalb als FFH- und Naturschutzgebiete unter Schutz gestellt. Trotz der hohen ökologischen Qualität des Landschaftraums insgesamt ist die strukturelle Diversität der Mittleren Elbe für die Fischfauna gering. Vor allem fehlen Sand- und Kiesbänke, die ein wichtiges Laichhabitat für rheophile Fischarten bilden (FLADUNG ET AL. 2004). Die Ufer sind weitgehend mit Buhnen und Steinschüttungen befestigt. Zwar können Buhnen und Buhnenfelder wichtige Sekundärlebensräume bieten (Schwarz und Kozerski 2002), die natürliche Zonierung der Ufer und Uferstrukturen durch Totholz und Makrophyten ist aber weitgehend verloren gegangen.

Das Abflussregime der Elbe ist durch regelmäßige Winter- und Frühjahrshochwasser geprägt. Längere großflächige und starke Niederschläge können auch in den Sommermonaten zu Hochwasserereignissen führen. Zu Niedrigwassersituationen kommt es vor allem während der Spätsommermonate. Die Wassertemperaturen bewegen sich in der Regel im Bereich von 0° bis 25°C und können während der Sommermonate Maximalwerte von über 25°C erreichen (Tab. 1). Die Sauerstoffkonzentrationen können in Abhängigkeit von der Entwicklung des Phytoplanktons in den Sommermonaten im Tagesverlauf stark schwanken. Hohe Phytoplankton-

Tab. 1: Abflüsse am Pegel Neu Darchau (Flusskilometer 536,4), Mittlere Wasserstände, Hoch- und Niedrigwasserstände am Pegel Lenzen (Flusskilometer 484,7) sowie Temperatur, Sauerstoffgehalte und pH-Werte am Pegel Cumlosen (Flusskilometer 470) (Monatsmittelwerte ± Standardabweichung der Jahre 2000 bis 2009). NW: mittlerer Niedrigwasserstand, MW: mittlerer Wasserstand, HW: mittlerer Hochwasserstand.

	Abfluss MW ± SW (m%)	NW Pegelstand (cm)	MW Pegeistand (cm)	HW Pegelstand (cm)	Tempe- ratur (°C)	O ₃ (mg/l)	pH-Wert
Jan.	758 ± 540	232 ± 84	292±111	386 ± 141	2,3 ± 1,9	12,8 ± 0,8	7.9 ± 0.2
Feb.	1.031 ± 454	282 ± 94	372±92	455 ± 84	3,3 ± 1,7	$12,5 \pm 0,9$	7.9 ± 0.2
Mär	1.179 ± 519	323 ± 68	407 ± 80	510±77	5,7 ± 2,0	12,4 ± 1,0	8.0 ± 0.3
Apr	1.172 ± 583	313 ± 91	395 ± 95	499 ± 109	$10,6 \pm 2,6$	12,5 ± 1,2	8.4 ± 0.5
Mai	623 ± 222	219 ± 39	287 ± 52	331 ± 77	$17,1\pm 2,2$	11,5 ± 1,5	8.6 ± 0.3
Jun	482 ± 184	163 ± 29	209 ± 45	267 ± 73	20,1 ± 2,5	11,5 ± 1,7	8.6 ± 0.4
Jul	413 ± 155	147 ± 41	198 ± 56	241 ± 78	21,3 ± 2,2	11,2 ± 1,8	$\theta,\theta \doteq 0,4$
Aug	478 ± 514	138 ± 42	193 ± 97	282 ± 175	$21,3 \pm 1,9$	$10,3 \pm 2,1$	0.5 ± 0.5
Sep	429 ± 270	145 ± 68	185 ± 84	246 ± 128	17,3 ± 2,1	10,7 ± 2,0	8.3 ± 0.4
Okt	462 ± 217	163 ± 62	202±75	290 ± 101	12,1 ± 2,3	10,8 ± 1,4	$8,1 \pm 0,3$
Nov	593 ± 413	196 ± 94	242 ± 107	304 ± 129	7,3 ± 1,9	11,0 ± 0,9	7.9 ± 0.2
Dez	696 ± 431	229 ± 81	276 ± 109	345 ± 133	3,7 ± 2,0	12,2 ± 0,9	7,9 ± 0,2

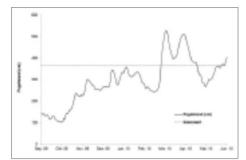


Abb. 1: Pegelstände am Pegel Lenzen (Elbe) von September 2009 bis Juni 2010. Die gestrichelte Linie zeigt den Pegelstand (365 cm) bei dem die Flutmulden mit dem Hauptstrom der Elbe verbunden sind.

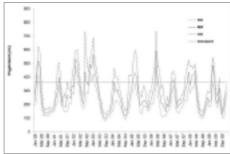


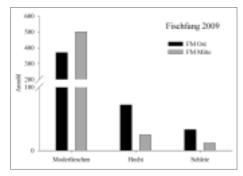
Abb. 2: Mittlerer Mittelwasserstand, mittlerer Niedrigwasserstand und mittlerer Hochwasserstand am Pegel Lenzen (Elbe) von Januar 2000 bis September 2009. Die gestrichelte Linie zeigt den Pegelstand (365 cm) bei dem die Flutmulden mit dem Hauptstrom der Elbe verbunden sind.

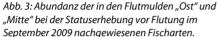
biomassen führen zeitweilig zu Sauerstoffübersättigungen von bis zu 200 % und zu hohen pH-Werten. Während der Nacht werden Sauerstoffkonzentrationen von 4 mg/l in der Regel nicht unterschritten, in abgeschlossenen Nebengewässern können die Sauerstoffkonzentrationen aber stärker zurückgehen (ARGE 2008). Einige, das hydrologische Regime der Mittleren Elbe kennzeichnende, Daten sind in Tab. 1 und den Abb. 1 und 2 dargestellt. Während die Elbe in den 80er Jahren des letzten Jahrhunderts zu den am stärksten belasteten Flüssen Europas gehörte, werden die Umweltqualitätsnormen bzgl. ausgewählter Schadstoffe nach den Vorgaben der Wasserrahmenrichtlinie 2000/60/EG im Bereich der Lenzener Elbtalaue derzeit eingehalten (ARGE 2008).

2.2 Die Fischfauna der Mittleren Elbe

Zwischen 1997 und 2001 gelang in der Mittleren Elbe der Nachweis von insgesamt 45 Fischarten. Die Fischartengemeinschaft wurde zahlenmäßig von Blei, Plötze, Ukelei, Güster, Aland und Flussbarsch dominiert (Thiel und Ginter 2002; Fladung 2002a, b). In den vergangenen Jahren wurden vermehrt typische Flussfischarten wie Hasel, Döbel, Quappe und, allerdings seltener, auch die Barbe nachgewiesen (Fladung 2002a, b). Ungeachtet der positiven Entwicklungen bestehen weiterhin erhebliche Defizite u. a. bezüglich der Abundanz von Langdistanzwanderern und der limnophilen Fischarten der Nebengewässer (Fladung 2002a, b).

Die beiden Flutmulden "Ost" und "Mitte" wurden im September 2009 und im Juni 2010 vom Boot aus mit einen Elektrofischfanggerät (FEG 5000, Fa. Bretschneider) befischt. Die Länge der Befischungsstrecken in den Flutmulden betrug 2009 jeweils 300 m. 2010 wurden insgesamt 700 m befischt, da die Flutmulden zu diesem Zeitpunkt miteinander sowie mit der Elbe in Verbindung standen und eine große Wasserfläche bildeten. In der Flutmulde "Mitte" wurden zusätzlich Multimaschenstellnetze (Standard) mit einer Gesamtlänge von 100 m eingesetzt. Die gefangenen Fische wurden bestimmt und die Totallänge gemessen. Anschließend wurden sie wieder in das Gewässer zurückgesetzt. Im Zuge der Befischungskampagnen wurden u. a. Sauerstoffgehalte, pH-Werte und Wassertemperaturen gemessen. Die Wasserstandsdaten wurden vom Wasser- und Schifffahrtsamt Magdeburg (Sachsen-Anhalt) zur Verfügung gestellt.


3 Ergebnisse und Diskussion


Im September 2009 wiesen beide Flutmulden leicht alkalische pH-Werte, oberflächennahe Sauerstoffgehalte zwischen 6,2 und 7,3 mg/l und Wassertemperaturen um 16,5°C auf. Während der Befischung im Folgejahr strömte bei einem Pegelstand von 430 cm (08.06.2010, 14.00 Uhr, Pegel Lenzen) Elbwasser in die Flutmulden. Die Sauerstoffgehalte lagen im Juni 2010 zwischen 12,1 und 13,5 mg/l, die Wassertemperaturen um 19°C. Neben der Photosynthese des Phytoplanktons dürfte auch der Wasserzustrom aus der Elbe für die hohen Sauerstoffgehalte verantwortlich gewesen sein. Die gemessenen Parameter geben keinen Hinweis darauf, dass die wasserchemischen Verhältnisse in den Flutmulden den Bestandsaufbau, das Wachstum oder die Reproduktion von Fischbeständen beeinträchtigen. Allerdings können im Falle einer Isolation der Nebengewässer während der Sommermonate Sauerstoffmangelsituationen, vor allem während der Nachtstunden, nicht ausgeschlossen werden.

Im Zuge der Statuserhebung vor Flutung im Herbst 2009 wurden insgesamt 1.011 Fische gefangen, die den drei Fischarten Hecht, Moderlieschen und Schlei angehörten (Abb. 3). Der Gesamtfang wurde zu 86 % vom Moderlieschen dominiert. Hecht und Schleie bildeten 10 % bzw. 4 % des Fanges. Am häufigsten wurden Jungfische der 0+ und 1+ Jahrgänge nachgewiesen, von Hecht und Schleie auch einige adulte Tiere gefangen.

Bei der Bestandserhebung nach Flutung im Frühjahr 2010 wurden insgesamt 115 Fische aus 11 Arten gefangen (Abb. 4). Die Fischartengemeinschaft wurde nunmehr in der Flutmulde Ost von 0+ Hechten und in der Flutmulde Mitte von Moderlieschen dominiert.

Der Vergleich der beiden Bestandserhebungen zeigt, dass die Flutmulden bereits kurze Zeit nach der Anbindung an den Hauptstrom von weiteren Fischarten besiedelt wurden. Bei der Statuserhebung vor Flutung im Herbst 2009 konnten mit Moderlieschen, Hecht und Schleie nur 3 Fischarten nachgewiesen werden, wobei die Pionierfischart Moderlieschen die Fischgemeinschaften beider Flutmulden stark dominierte. Das Vorkommen von verschiedenen Altersstadien der Arten Schleie und Hecht ist ein Hinweis darauf, dass die Fischbesiedlung bereits Jahre zuvor vermutlich auf natürlichem Wege stattgefunden hat. Im Frühjahr 2010 wurden nach Erstflutung bereits 11 Fischarten registriert, wobei eurytope (Barsch, Blei, Güster, Hecht, Kaulbarsch, Plötze, Ukelei, Wels) und limnophile (Moderlieschen, Schleie) Fischarten im Fang vorherrschten. Obgleich einige dieser Arten nur in Einzelindividuen vorkamen, macht die höhere Artenzahl doch deutlich, dass weitere flusstypische Fischarten mit dem Elbewasser in die Flutmulden gelangt sind. Die vergleichsweise niedrige Fischabundanz im Frühjahr 2010 dürfte in erster Linie auf die größere Ausdehnung der Wasserfläche zurückzuführen sein. 2009 waren die Fische in kleinen, voneinander isolierten Flutmulden konzentriert, wohingegen die Flutmulden im Juni 2010 miteinander und mit dem Hauptstrom verbunden waren. Die Mehrzahl der gefangenen Fische waren 0+ oder 1+ Jungfische. Deren Häufigkeit zeigt, dass einige Fischarten in den neugeschaffenen Nebengewässern reproduziert haben und unterstreicht die Bedeutung der Flutmulden für die Reproduktion phytophiler Arten sowie für das Aufkommen der Jungfische allgemein. Von den in der Elbe vorkommenden rheophilen Arten wurde bislang nur der Hasel mit zwei präadulten Exemplaren in den Flutmulden nachgewiesen. Lithophile Flussfischarten wurden nicht gefangen, so dass die Funktion der Flutmulden für die Reproduktion dieser Arten unklar bleibt.

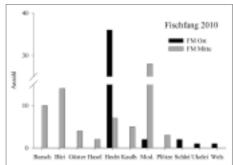


Abb. 4: Abundanz der in den Flutmulden "Ost" und "Mitte" bei der Bestandserhebung nach Flutung im Juni 2010 nachgewiesenen Fischarten.

Vermutlich wird die Zahl flusstypischer Fischarten in den Flutmulden in den Folgejahren weiter ansteigen. An anderen Fließgewässern durchgeführte Untersuchungen zeigen, dass sich in Nebengewässern, in Abhängigkeit von der Vegetationsentwicklung und dem vorherrschenden hydrologischen Regime, innerhalb weniger Jahre charakteristische Lebensgemeinschaften ausbilden, die die Fischartengemeinschaft des Flusses stabilisieren und zu einer Erhöhung der natürlichen Biodiversität der Fließgewässer beitragen (BUJSE ET AL. 2002). Prozessorientierte Maßnahmen wie Deichrückverlegungen und der Wiederanschluss bzw. die Neuschaffung von Nebengewässern, die die hydromorphologische Dynamik eines Fließgewässers unterstützen, werden häufig als wirkungsvoller eingeschätzt, verglichen mit Maßnahmen, die nur auf den Schutz bestimmter Arten abstellen, da erstere die Funktionalität und Selbsterhaltung des Ökosystems unterstützen (AMOROS 2001). Vor diesem Hintergrund ist das Naturschutzgroßprojekt "Lenzener Elbtalaue" ein wichtiger Beitrag zur Erreichung eines "guten ökologischen Zustandes" (EU WRRL) der Mittleren Elbe. Ein weiteres Monitoring der Fischbestände in den folgenden Jahren ist empfehlenswert, um die längerfristige Bedeutung der Flutmulden für die Flussfischfauna zu untersuchen und Hinweise für die künftige Gestaltung derartiger Strukturen zu gewinnen.

Literatur

AARTS B.G.W., VAN DEN BRINK F.W.B. und P.H. NIENHUIS (2004): Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Research and Applications 20: S. 3-23.

ALLOUCHE, S. (2002): Nature and functions of cover for riverine fish. Bulletin Français de la Peche et de la Pisciculture 365/366: S. 297-324.

AMOROS, C. (2001): The concept of habitat diversity between and within ecosystems applied to river sidearm restoration. Environmental Management 28/6: S. 805-817.

ARGE, Arbeitsgemeinschaft für die Reinhaltung der Elbe (2008): Gewässergütebericht der Elbe 2007, Hamburg, 71 S.

BELL, E., DUFFY, W.G. und T.D. ROELOFS (2001): Fidelity and survival of juvenile coho salmon in response to a flood. Transactions of the American Fisheries Society 130: S. 450-458.

- BORCHERDING, J., BAUERFELD, M., HINTZEN, D. und D. NEUMANN (2002): Lateral migrations of fishes between floodplain lakes and their drainage channels at the Lower Rhine: diel and seasonal aspects. Journal of Fish Biology 61: S. 1154-1170.
- Buijse, Abelings, B.W., Oosterberg, W. und F.C.J.M. Roozen (2002): Restoration strategies for river floodplain along large lowland rivers in Europe. Freshwater Biology 47: S: 889-907.
- FLADUNG, E. (2002a): Untersuchungen zum adulten Fischbestand im Hauptstrom (Fahrrinne) der Mittelelbe. Zeitschrift für Fischkunde Suppl. 1: S. 121-131.
- FLADUNG, E. (2002b) Der präadulte/adulte Fischbestand in Buhnenfeldern und Leitwerken der Mittelelbe. Zeitschrift für Fischkunde Suppl. 1: S. 101-120.
- FLADUNG, E., SCHOLTEN, M. und C. WIRTZ (2004): Verfügbarkeit und Nutzung von Sand- und Kiesbänken im Hauptstrom der unteren Mittelelbe als Laich- und Aufwuchshabitate für Fische. Verhandlungen der Gesellschaft für Ichthyologie 4: S. 25-47.
- GOHLISCH, G., NAUMANN, S. und P. RÖTHKE-HABECK (2005): Bedeutung der Elbe als europäische Wasserstraße. Umweltbundesamt, Berlin, 52 S.
- HEERMANN, L. und J. BORCHERDING (2006): Winter short-distance migration of juvenile fish between two floodplain water bodies of the Lower River Rhine. Ecology of Freshwater Fish 15: S. 161-168.
- LEWIN, W.-C., OKUN, N. und T. MEHNER (2004): Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49, S. 410-424.
- NUNN, A.D., HARVEY, J.P. und I.G. Cowx (2007): Benefits to 0+ fishes of connecting man-made waterbodies to the lower River Trent, England. River Research and Applications 23: S. 361-376.
- PONT, D. und Y. NICOLAS (2001): Habitat use by 0+ fish in an old-engineered river reach (Lower Rhone, France): relative importance of habitat heterogeneity and hydrological variability. Archiv für Hydrobiologie 135/2-4: S. 219-238.
- RECKENDORFER, W., KECKEIS, H., WINKLER, G. und F. SCHIEMER (1999): Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biology 41: S. 583-591.
- SCHWARZ, R. und H.-P. KOZERSKI (2002): Die Buhnenfelder der unteren Mittelelbe Geschichte, Bedeutung, Zukunft. In: Deutsche Gesellschaft für Limnologie (DGL) Tagungsbericht 2001: S. 417-422.
- SIMON, M, BEKELE, V., KULASOVA, B., MAUL, C., OPPERMANN, R. und P. ŘEHAK (2005): Die Elbe und ihr Einzugsgebiet, Internationale Kommission zum Schutz der Elbe (IKSE), Magdeburg, 258 S.
- SMOKOROWSKI, K.E. und T.C. PRATT (2007): Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems - a review and meta-analysis. Environmental Reviews 15:
- THIEL, R. und R. GINTER (2002): Ökologie der Elbefische (ELFI) Problemstellung, Zielsetzung und Realisierung eines Verbundprojektes des Bundesministeriums für Bildung und Forschung (BMBF). Zeitschrift für Fischkunde Suppl. 1: S. 1-12.

Entwicklung der Auenvegetation nach einer Deichrückverlegung – ein Ausblick

Eva Mosner, Peter Horchler, Bundesanstalt für Gewässerkunde, Koblenz

1 Einleitung

Auen zählen zu den artenreichsten Lebensräume der Erde (TOCKNER und STANFORD 2002). Gleichzeitig gehören sie durch den Ausbau der Flüsse und die landwirtschaftliche Nutzung aber auch zu den am stärksten bedrohten Lebensräumen. Neben dem reinen Flächenverlust der rezenten (d. h. aktiv überfluteten) Aue durch Eindeichungen (BMU und BfN 2009), ist vor allem eine Veränderung des Abflussregimes und die Verringerung der Morphodynamik des Flusses durch den Bau von z.B. Dämmen, Staustufen, Uferbefestigung und Buhnen dafür verantwortlich. Die verschiedenen Vegetationstypen in der Aue sind jedoch an das spezielle Störungsregime des Flusses (Überflutungs- und Morphodynamik) angepasst und viele Arten sind hiervon direkt abhängig (NAIMAN und DECAMPS 1997, WARD 1998). Um die typischen Lebensräume der Aue wiederzuentwickeln, ist daher eine Redynamisierung des Systems Fluss-Aue erforderlich. Dies ist zum Beispiel durch Deichrückverlegung möglich. Sie erlaubt den Wiederanschluss von ehemals abgetrennten Bereichen (der Altaue) an das natürliche Überflutungsregime des Flusses und damit einhergehend eine erhöhte morphodynamische Aktivität in diesen Bereichen. Obwohl solche Maßnahmen naturschutzfachlich und auch hinsichtlich wasserbaulicher Aspekte (z. B. des Hochwasserschutzes) als wertvoll angesehen werden, ist bislang wenig über deren "ökologische Effektivität" bekannt. Generell ist durch eine erhöhte Strukturvielfalt (= Habitatdiversität) und die Überflutungsdynamik eine Zunahme von typischen Auenarten zu erwarten. Ob sich in Folge einer solchen Maßnahme die geplanten Zielzustände aber tatsächlich einstellen und dauerhaft erhalten bleiben, ist bislang offen.

Neben den kurzfristigen Entwicklungszielen solcher Maßnahmen spielen für die Bewertung auch langfristige Entwicklungstrends eine Rolle. So könnten aus naturschutzfachlicher Sicht geplante Zielzustände, zum Beispiel durch die möglichen Auswirkungen des Klimawandels, langfristig verfehlt werden. Künftig zu erwartende Veränderungen des Temperatur- und Niederschlagsregimes lassen Veränderungen der Abflüsse erwarten (PALMER ET AL. 2008; GÖRGEN ET AL. 2010). Dies wiederum sollte einen unmittelbaren Effekt auf die Auenvegetation haben (ROOD ET AL. 2008; STRÖM ET AL. 2012). Käme es beispielweise zu Verringerungen des Mittel- und Niedrigwasserabflusses in der Vegetationsperiode, könnten Standorte, die sich heute für bestimmte, an Feuchtigkeit angepasste Vegetationstypen eigenen (z. B. Flutrasen, Röhrichte, Weichholzauen, wechselfeuchte Auenwiesen) in Zukunft "zu trocken" ausfallen. Um die Effektivität solcher Maßnahmen nachhaltig zu garantieren, ist also nicht nur eine Evaluation der Maßnahme im Heute, sondern auch unter Berücksichtigung möglicher künftiger Zustände notwendig.

Im Rahmen des Forschungsprogramms "KLIWAS – Auswirkungen des Klimawandels auf Wasserstraßen und Schifffahrt" wird im Projekt 5.06 "Auswirkungen des Klimawandels auf die Vegetation der Auen" daher folgenden Fragen nachgegangen:

- 1. Auf welche Weise und wie schnell entwickelt sich die Vegetation im Deichrückverlegungsgebiet (DRV-Gebiet) Lenzen in Folge der Deichrückverlegung im Vergleich zu Standorten der rezenten Aue, die nie vom Überflutungsgeschehen abgeschnitten waren?
- 2. Welche Auswirkungen könnten klimatisch bedingte Abflussveränderungen auf die Vegetationsentwicklung im DRV-Gebiet haben? Könnte der geplante Zielzustand für die Vegetation durch mögliche Veränderungen gefährdet sein?

2 Methodenüberblick

Entsprechend der beiden Fragestellungskomplexe sind die Methoden in diese Aspekte gegliedert. Zur Bearbeitung des ersten Teils werden im und um das DRV-Gebiet insgesamt 154 Vegetationsaufnahmen (81 innerhalb / 73 außerhalb, nach einem stratifiziert-randomisierten Samplingdesign ausgewählte Plots) über mehrere Jahre (2009–2013) jeweils im Spätsommer nach einer modifizierten Braun-Blanquet-Skala (REICHELT und WILMANS 1973) durchgeführt. Die Stratifizierung erfolgte nach einem Vertikalgradienten (relative Höhenlage zum Wasserspiegel bei Mittelwasserabfluss (MQ)) sowie dem Lateralgradienten "Distanz zum Fluss", der mit den Grundwasserstandsschwankungen stark korreliert ist (LEYER 2005), um die typischen Vegeta-

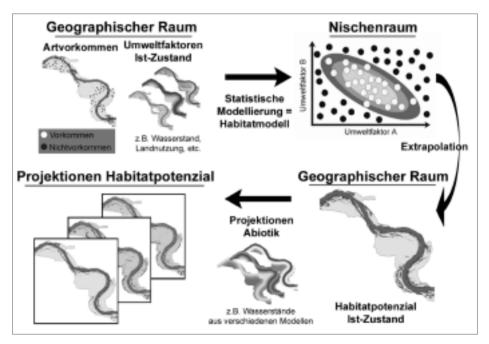


Abb. 1: Schematisiertes Vorgehen bei der Habitatmodellierung. Aus Präsenz-Absenz-Daten von Arten/Vegetationstypen und den entsprechenden Punktinformationen für potenziell relevante Umweltfaktoren (im geografischen Raum) lassen sich mittels statistischer Modellierung die Zusammenhänge von Art-Umwelt-Mustern abbilden (im sog. Nischenraum). Liegen die relevanten Umweltfaktoren als flächige Information vor (bspw. für den Ist-Zustand, aber auch künftige Zustände), kann auf Basis der Modelle das Habitatpotenzial ebenso flächig dargestellt werden (wieder im geografischen Raum).

tionstypen der Aue abzudecken. Da mit der Deichrückverlegung eine Nutzungsaufgabe einher ging, mussten als Vergleichsflächen im Vorland ebenfalls nutzungsfreie Bereiche in die Untersuchungen einbezogen werden. Die Flächen wurden alle mit einer horizontalen Genauigkeit von < 10 cm eingemessen.

Abiotische Grundinformationen für die einzelnen Aufnahmestandorte zu Hydrologie und Boden werden auf Basis eines hoch aufgelösten digitalen Geländemodells (DGM), Grund- und Oberflächenwassermessungen, einer 1-dimensionalen-hydrodynamisch-numerischen Modellierung der Wasserstände der Elbe sowie aus Bodenanalysen der Vegetationsaufnahmeflächen ermittelt. Auf Basis dieser Datengrundlage lässt sich die Entwicklung der Vegetation innerhalb und außerhalb des Deichrückverlegungsgebiets vergleichen. So kann ermittelt werden, wie schnell sich die Vegetation innerhalb des DRV-Gebiets verändert und wie sehr sich die dortige Vegetation jener in der rezenten Aue angleicht. Darüber hinaus können die Umweltinformationen herangezogen werden, um Veränderungen der Vegetationsstruktur in Beziehung zu den sich ändernden Umweltbedingungen zu setzen, um daraus mögliche Kausalzusammenhänge abzuleiten.

Aus den Zusammenhängen zwischen der Verbreitung der Vegetation bzw. der Pflanzenarten und den potenziell wichtigen Umweltfaktoren lassen sich in einem zweiten Schritt Habitatmodelle entwickeln. Diese nutzen die beschriebenen Zusammenhänge, um für den Ist-Zustand sowie für mögliche Zukunftszustände die räumliche Verbreitung der Habitate der verschiedenen Vegetationstypen/Pflanzenarten abzubilden (Abb. 1).

Die Projektionen der künftigen hydrologischen Bedingungen entstammen der KLIWAS-Modellkette (Abb. 2). Ausgang für künftige Klimazustände sind die SRES-Klimaprojektionen (IPCC 2007), die verschiedene ökonomische Entwicklungen und daraus resultierend unterschiedliche Treibhausgasemissionen abbilden. Um letztlich die Informationen zu den hydrologischen Bedingungen in Fluss und Aue für mögliche künftige Zustände zu generieren, werden Globa-

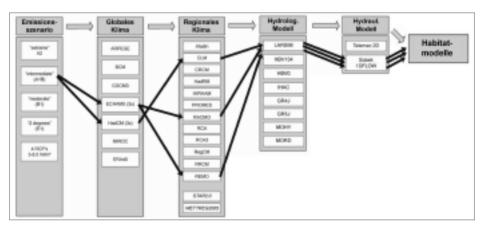


Abb. 2: Skizze der KLIWAS-Modellkette. Der obere Block zeigt die Abfolge der verschiedenen Modelltypen, der untere die in KLIWAS im Rahmen der Wasserhaushaltsmodellierung verwendeten spezifischen Modelle. Die schwarzen Pfeile zeigen drei beispielhafte Verknüpfungen der Modellebenen, aus denen sich drei verschiedene Extrapolationsdatensätze für die Habitatmodellierung ergeben.

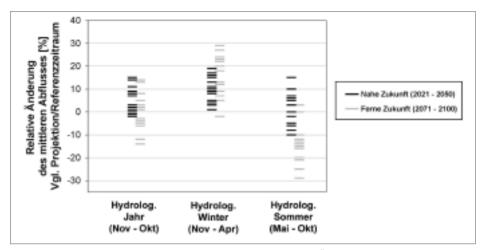


Abb. 3: Projektionskorridor der verschiedenen Modellketten für die relative Änderung des mittleren Abflusses für die nahe und ferne Zukunft. Dargestellt ist der Pegel Worms am Oberrhein, jeweils als Mittelwert für den Betrachtungszeitraum für das hydrologische Jahr, den hydrologischen Winter und den hydrologischen Sommer.

le Zirkulationsmodelle (GCM) mit Regionalen Klimamodellen (RCM) gekoppelt, um abiotische Variablen wie Temperatur und Niederschlag auf relevanten räumlichen Skalen zu berechnen. Diese bilden dann wiederum die Eingangsvariablen für Wasserhaushaltsmodelle zur Berechnung von Abflussmengen. Hydraulische Modelle kalkulieren abschließend die Wasserstände für den Flussschlauch, woraus sich jene für die Aue ableiten lassen.

Neben der Verknüpfung dieser verschiedenen Modelltypen bildet der Multimodell-Ansatz einen weiteren Schwerpunkt im Rahmen von KLIWAS (Abb. 2). Idee ist, die Unsicherheit der verschiedenen Modelltypen (GCMs und RCMs) und deren Verknüpfung zu evaluieren, um so zu einer Abschätzung der Bandbreite möglicher künftiger Zustände zu gelangen. So werden verschiedene GCMs mit verschiedenen RCMs gekoppelt und für diese Ketten wird jeweils die Wasserhaushalts- und hydraulische Modellierung durchgeführt (Abb. 2).

Im Ergebnis erhält man so einen "Projektionskorridor" von zu erwartenden Änderungen der hydrologischen Bedingungen in Fluss und Aue (Abb. 3). Entsprechend werden zur Berechnung des künftigen Habitatpotenzials mehrere Modellketten als Grundlage verwendet. Prinzipiell lässt sich nichts über die Eintrittswahrscheinlichkeit der verschiedenen Modellketten aussagen, d. h. innerhalb des Projektionskorridors (Abb. 3) sind alle Zustände gleich wahrscheinlich. Aufgrund der z. T. doch recht großen Spannbreite bezüglich der möglichen Veränderungen (Abb. 3) ist eine Bewertung, z. B. von Rückdeichungsmaßnahmen, wegen ebendieser Unsicherheit nicht unproblematisch.

Eine Möglichkeit mit dieser Unsicherheit umzugehen, ist die Ensemblebildung (ARAUJO und NEW 2007), d. h. die Verschneidung des Habitatpotenzials, berechnet aus den verschiedenen Modellketten (Abb. 4). In einem ersten Schritt wird das Habitatpotenzial aller Modellberechnungen miteinander verschnitten, so dass man die flächige Information darüber erhält, welche Bereiche von allen Projektionen als geeignet beschrieben werden und welche Bereiche nur von einer, zwei, etc. (N-1 Projektionen) als geeignet ausgewiesen werden (Abb. 4).

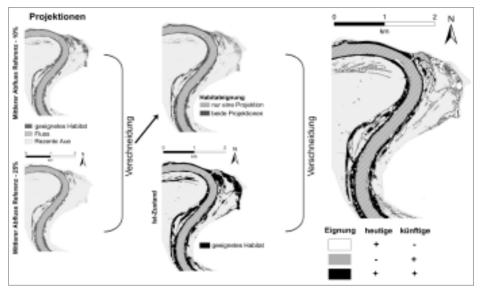


Abb. 4: Vorgehen zur Ermittlung von künftig potenziell geeignetem Habitat auf Basis verschiedener Projektionen am Beispiel von Weidengebüschen an der Mittelelbe bei Cumlosen.

Um nun solche Flächen zu identifizieren, die für eine Art bzw. Vegetationsform unter allen Umständen in Zukunft geeignet sein sollen, verschneidet man die Bereiche, die für alle Projektionen als geeignet beschrieben werden, mit dem Ist-Zustand und erhält so die Informationen, welche Bereiche ihre Eignung bewahren (heute und in Zukunft geeignet), welche ihre Eignung verlieren (heute, aber nicht in Zukunft geeignet) und solche, die an Eignung gewinnen (heute nicht, aber in Zukunft geeignet). Auf diese Weise lassen sich, sicherlich recht konservativ, aber mit großer Sicherheit, die künftig zu erwartenden Veränderungen im Habitatpotenzial von Arten/Vegetationstypen abschätzen.

3 Ausblick

Bereits in den ersten Jahren nach erfolgter Rückdeichung zeigt sich in der Vegetation ein starker Wechsel von Arten, bedingt durch die neu gewonnene Überflutungsdynamik, die Anlage der Flutmulden, aber auch die Nutzungsaufgabe. Darüber hinaus zeigen die einzelnen Jahre größere Unterschiede in der Vegetation, was auf die teils sehr unterschiedlichen, extremen Witterungsbedingungen (auf Frühjahrstrockenheit, feuchte Sommer, etc.) zurückzuführen sein könnte. Konkretere Aussagen zur Entwicklungsrichtung lassen sich nach Abschluss des Monitorings und vollständiger Auswertung der biotischen und abiotischen Datensätze Ende 2013 treffen.

Für die Elbe liegen bislang noch keine Ergebnisse zu den Abflussveränderungen bis zum Jahr 2100 aus dem KLIWAS-Forschungsverbund vor. Am Rhein (siehe Abb. 3 und GÖRGEN ET AL. 2010) zeigt sich, zumindest für die ferne Zukunft, dass die Abflüsse im Winter eher zunehmen, im Sommer eher abnehmen werden. Darüber hinaus ist eine größere Variabilität der Abflüsse über den Jahresgang zu erwarten. Mit den Ergebnissen des Multimodellansatzes für die Elbe ist ebenfalls bis Ende 2013 zu rechnen.

Evolution 22 (1): S. 42-47.

- ARAUJO, M.B. und M. NEW (2007): Ensemble forecasting of species distributions, Trends in Ecology &
- BMU, BfN (2009): Auenzustandbericht Flussauen in Deutschland. Silber Druck Niestetal, 35 S.
- GÖRGEN, K., BEERSMA, J., BRAHMER, G., BUITEVELD, H., CARAMBIA, M., DE KEIZER, O., KRAHE, P., NILSON, E., LAMMERSEN, R., PERRIN, C. und D. VOLKEN (2010): Assessment of climate change impacts on discharge in the Rhine River basin: Results of the RheinBlick2050 Project. CHR-Report, I-23, Lelystad, 229 S.
- IPCC (2007): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104 S.
- LEYER, I. (2005): Predicting plant species responses to river regulation: the role of water level fluctuations. Journal of Applied Ecology 42 (2): S. 239-250.
- NAIMAN, R.J. und H. DECAMPS (1997): The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics 28: S: 621-658.
- Palmer, M.A., LIERMANN, C.A.R., NILSSON, C., FLORKE, M., ALCAMO, J., LAKE, P.S. und N. BOND (2008): Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment, 6 (2): S. 81-89.
- REICHELT, G. und O. WILMANS (1973): Vegetationsgeographie. Westermann.
- ROOD, S.B., PAN, J., GILL, K.M., FRANKS, C.G., SAMUELSON, G.M. und A. SHEPHERD (2008): Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests. Journal of Hydrology, 349 (3-4): S. 397-410.
- STRÖM, L., JANSSON, R. und C. NILSSON (2012): Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshwater Biology: 57 (1), S. 49-60.
- TOCKNER, K. und J.A. STANFORD (2002): Riverine flood plains: present state and future trends. Environmental Conservation 29 (3): S. 308-330.
- WARD, J.V. (1998): Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83 (3): S. 269-278.

Mathias Scholz¹, Hans Dieter Kasperidus¹, Christiane Schulz-Zunkel¹, Dietmar Mehl²

¹ UFZ – Helmholtz-Zentrum für Umweltforschung, Department Naturschutzforschung, Leipzig

² biota – Institut für ökologische Forschung und Planung GmbH, Bützow

1 Einleitung

Die natürliche Dynamik in den ursprünglichen Auengebieten ist heute weitestgehend auf einen schmalen Bereich entlang der Flüsse und Ströme reduziert. Nur hier finden sich noch aktive Überschwemmungsflächen mit auentypischen Arten- und Lebensgemeinschaften. Der Wechsel von Hoch- und Niedrigwasser in der Altaue hinter den Deichen beschränkt sich auf eine gedämpfte Dynamik des Grundwasserleiters, die bei lang anhaltenden Hochwasserereignissen durch Qualm- bzw. Drängewasser zu Überstauungen führen kann. Wesentliche auentypische Prozesse wie regelmäßige Überflutungen, Sedimentation und Erosion finden nicht mehr statt. Angepasste Auenarten und -lebensgemeinschaften treten zugunsten von Ubiquisten zurück, bzw. sind in ihrer Selbstregulations- und Regenerationsfähigkeit gefährdet. Eine Wiederanbindung von Altauenbereichen an das Überflutungsgeschehen ist deshalb eine der vordringlichsten Maßnahmen zur Revitalisierung gefährdeter Auenlebensräume und ihrer Ökosystemfunktionen. Dadurch wird gleichzeitig eine Vielzahl an Auenfunktionen (z.B. Retention, Sedimentation, Hydrodynamik etc.) reaktiviert.

Der im Rahmen des Nationalen Auenprogrammes vom Bundesamt für Naturschutz (BfN) erarbeitete Auenzustandsbericht zeigt deutlich, dass Auen, die ihren naturnahen Charakter bewahren konnten, in Deutschland selten sind (BRUNOTTE ET AL. 2009, BfN und BMU 2009). Weiterführende Analysen und Bewertungen wurden im Rahmen des BfN-Projektes: "Ökosystemfunktionen von Flussauen" durchgeführt (SCHOLZ ET AL. 2012a). Dabei wurden ausgewählte Auenfunktionen wie die Hochwasserretention, der Nährstoffrückhalt, die Speicherung von Treibhausgasen und Kohlenstoff sowie die auentypische biologische Vielfalt für 79 Flussauen in Deutschland untersucht und bewertet. Damit wurde erstmals eine ökologisch abgeleitete Quantifizierung der Auenleistungen im Sinne von Ökosystemfunktionen und/oder -leistungen (TEEB 2010, HANSJÜRGENS 2011) auf dieser Landschaftsebene ermöglicht.

Dieser Beitrag geht der Frage nach, in welchen Dimensionen sich die Maßnahme der Deichrückverlegung in Lenzen auf die Ökosystemfunktionen auswirkt. Dazu werden die mit den bundesweiten Methoden ermittelten Werte in einer Vorher-Nachher-Betrachtung dargestellt.

2 Methoden

Um die Wirkungen von Renaturierungsmaßnahmen auf die vier Auenfunktionen Hochwasserretention, Nährstoff- und Kohlenstoffrückhalt sowie Habitatausstattung näher zu betrachten, wurden mehrere Deichrückverlegungen im Bereich der Mittleren Elbe mit einer Gesamtfläche von ca. 2.400 ha ausgewählt (SCHOLZ ET AL. 2012d). In diesem Beitrag werden ausschließlich Ergebnisse der Deichrückverlegung bei Lenzen vorgestellt. Um eine Vergleichbarkeit der Ergebnisse für die oben genannten Auenfunktionen für den Zustand vor und nach Umsetzung der Maßnahme zu ermöglichen, erfolgte die Berechnung nach Methoden zur bundesweiten Ab-

schätzung der Auenfunktionen auf dem Niveau von Auen-km-Segmenten (ebd.). Entsprechend mussten auch für die Eingangsdaten Verallgemeinerungen vorgenommen werden, auch wenn im Einzelfall detailliertere Daten vorlagen.

Eine wesentliche Eingangsgröße waren zusammengefasste Landnutzungstypen, die für die bundesweite Methode zu sieben Landnutzungstypen aus dem Digitalen Landschaftsmodell (DLM25) generiert wurden. Für den Vergleich zwischen dem Zustand vor und nach der Deichrückverlegung für die einzelnen Auenfunktionen der rezenten Auenabschnitte bei Lenzen erfolgte die Rekonstruktion der Flächennutzung der rezenten Aue vor der Deichrückverlegung mittels Landnutzungsdaten aus dem DLM25, welche den Zustand Ende der 1990er Jahre darstellen (Abb. 1 links). Das Gebiet war zu dieser Zeit überwiegend von Grünlandnutzung geprägt¹. Ab dem Jahr 2005, also noch vor der Deichöffnung, wurde im Rückdeichungsgebiet die intensive Grünlandnutzung zu Gunsten von extensiv genutztem Auengrünland, Feuchtlebensräumen, Auenwaldanpflanzungen oder der Schaffung von Flutrinnen und Sekundärgewässern aufgegeben (PURPS ET AL. 2004, DAMM ET AL. 2012).

Für den Zustand unmittelbar vor Öffnung des Altdeiches wurde eine Biotoptypenkartierung aus dem Jahr 2009 zu Grunde gelegt (NABEL ET AL. 2012) und für die weitere Berechnung zu sieben Landnutzungstypen zusammengefasst (Abb. 1 rechts, Abb. 2²).

Unberücksichtigt blieben, wie auch bei der bundesweiten Betrachtung, Eingangsgrößen zur konkreten lokalen Gebietshydrologie, Bodenverteilung, Topographie oder zur detaillierteren Biotopausstattung.

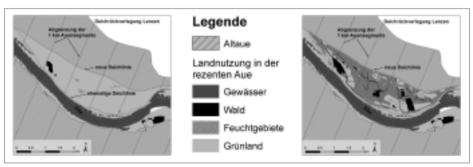


Abb. 1: Landnutzungsanteile in den Flächen der Deichrückverlegung Lenzen vor Umsetzung der Maßnahme (links - Datengrundlage DLM 25 © GeoBasis-DE/BKG 2009) und unmittelbar vor Deichöffnung (rechts - Datengrundlage NABEL ET AL. 2012). Auenabgrenzung: LANIS-Bund, Bundesamt für Naturschutz (2009), Geobasisdaten © Geo-Basis-DE/BKG (2009) sowie BRUNOTTE ET AL. 2009.

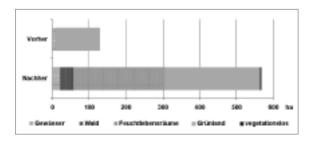


Abb. 2: Verteilung der Landnutzungen in der rezenten Aue vor und nach der Deichrückverlegung bei Lenzen.

Um die Funktion der **Hochwasserretention** für die bundesweite Auenkulisse zu erfassen, wurde ein qualitatives Schätzverfahren angewandt, das die Funktionsfähigkeit der rezenten Auen zum Hochwasserschutz ins Verhältnis zur natürlichen Retentionsfähigkeit der morphologischen Auen setzt (MEHL ET AL. 2012). Neben dem Flächengewinn an überflutbarer, rezenter Aue in den jeweiligen Kilometersegmenten wurde auch die Rauigkeit durch die in der Deichrückverlegungsfläche bestehende Landnutzung neu berechnet.

Eine Schätzung der **Nährstoffretention** erfolgte für den Stickstoffrückhalt durch Denitrifikationsraten und den Phosphorrückhalt durch Sedimentation (SCHULZ-ZUNKEL ET AL. 2012). Für die Berechnung des Stickstoffrückhalts wurde eine maximale Variante zur Berechnung der Denitrifikationsraten über Böden genutzt, da davon ausgegangen wird, dass für die Retention günstige hydraulische und hydrologische Bedingungen in der Deichrückverlegungsfläche vorliegen und ein aggregierter Bodentyp Auenboden/Gley nach der Bodenkundlichen Übersichtskarte Deutschland (BÜK1000) vorkommt. Die Phosphorretention wurde mittels eines auf Retentionsfläche, Rauigkeit und Literaturwerten basierenden Algorithmenansatzes berechnet.

Die Berechnung des durch die Rückdeichung möglichen Zugewinns an **Kohlenstoffvorrat**, zum einen in den Böden zum anderen durch zukünftige Waldentwicklung gebunden in der oberirdischen Vegetation, erfolgte unter Verwendung von Faustzahlen. Obwohl für Auen lokal eine sehr heterogene Bodenzusammensetzung bekannt ist, wurde wegen der Vergleichbarkeit mit den bundesweiten Auswertungen ebenfalls von der Bodenform Auenböden/Gley in der Deichrückverlegungsfläche ausgegangen. Für den Zugewinn an Kohlenstoff im Boden konnten die bei SCHOLZ ET AL. (2012b) ermittelten Unterschiede zwischen den Kohlenstoffvorräten der Böden der Altaue und der rezenten Aue der Elbe für die Landnutzungen Acker und Grünland herangezogen werden. Es wird davon ausgegangen, dass durch die Rückdeichung das Sedimentationsgeschehen auf diesen Flächen wieder zunimmt und somit sedimentgebundener Kohlenstoff in die Aue eingetragen wird. Allerdings ist bei diesen Schätzungen der Faktor Zeit sowie der jährliche Zugewinn durch Sedimentation oder oberirdische Biomasse im Wald nicht berücksichtigt.

Für die **Habitatfunktion** wurde ein Habitatindex abgeleitet, der auf bundesweit verfügbaren Datensätzen aufbaut und neben der Bilanzierung auentypischer Lebensräume und Anteil an NATURA 2000 Flächen, auf der Ebene von Landnutzungstypen insbesondere die Landnutzungsintensität vor und nach der Deichrückverlegung einbezieht. Es wird davon ausgegangen, dass nach der Deichrückverlegung günstige Voraussetzungen für die Entwicklung auentypischer Lebensgemeinschaften vorliegen (SCHOLZ ET AL. 2012c).

3 Ergebnisse

Insgesamt vergrößert sich durch die Deichrückverlegung Lenzen die Fläche der Überschwemmungsaue im betrachteten rechts-elbisch gelegenen Flussabschnitt von 130 ha auf 550 ha. Gleichzeitig verbessert sich das mit der bundesweiten Methode errechnete Hochwasserretentionsvermögen von einem "hohen Auenretentionsverlust" vor der Deichrückverlegung auf einen "geringen Auenretentionsverlust" nach der Deichrückverlegung.

Der Zugewinn von 420 ha Retentionsraum führte bereits zu einer deutlichen Verbesserung des Hochwasserschutzes für die ca. zwei Kilometer elbaufwärts liegende Stadt Schnacken-

burg. Der Hochwasserscheitel am Pegel Schnackenburg lag beim Hochwasser 2011 – nach der Deichrückverlegung – um mehr als 20 cm unter dem Pegelstand des vergleichbaren Hochwassers von 2006 – vor der Deichrückverlegung (ALEXY und FAULHABER 2011, s. a. FAULHABER und ALEXY in diesem Band).

Bei der **Nährstoffretention** wird nach der Deichrückverlegung Lenzen für den Stickstoffrückhalt eine vierfache Verbesserung erreicht, was einer Steigerung von 20 t auf 112 t Stickstoffrückhalt jährlich entspricht. Beim Phosphorrückhalt tritt sogar eine 20-fache Verbesserung auf, die einer Steigerung von 0,1 t vor der Deichrückverlegung auf 2,1 t P-Rückhalt jährlich entspricht.

Auenböden können aber auch in der Altaue noch relativ hohe **Kohlenstoffvorräte** aufweisen, die aus Sedimenteinträgen vor der Ausdeichung stammen (SCHWARTZ ET AL. 2001, EISENMANN ET AL. 2002). Aus diesem Grund wird nur der in Folge der wiedereinsetzenden Überflutung höhere Kohlenstoffgehalt der Böden nach Deichrückverlegung als Zugewinn betrachtet. Bezogen auf zusammengefasste Eingangsdaten der Acker- und Grünlandstandorte in der rezenten Aue der Mittleren Elbe besitzen sie einen im Mittel um 60 t C ha⁻¹ höheren Vorratswert als in der Altaue. Mit dieser Faustzahl errechnet sich ein Zugewinn von insgesamt 24.100 t Kohlenstoff im Boden der Deichrückverlegungsfläche. Es ist davon auszugehen, dass sich dieser Zugewinn nur über einen längeren Zeitraum über Sedimentation und bei günstigen hydrologischen Bedingungen anreichert.

Da bereits 34 ha Wald in der Rückdeichungsfläche vorhanden sind, wirken sie als aktiver, oberirdischer Kohlenstoffspeicher mit ca. 7.000 t C.³ Durch die geplanten langfristigen Waldentwicklungen von weiteren 250 ha in den nächsten Jahrzehnten werden diese Bestände in erheblichem Maße zur Kohlenstoffspeicherung von weiteren 45.000 t beitragen.

Eine Verbesserung der **Habitatfunktion** erfolgte insbesondere durch die Wiederherstellung einer auentypischen Überflutungs- und Grundwasserdynamik sowie durch die bereits durchgeführten biotopersteinrichtenden Maßnahmen zur Umwandlung von intensiv genutztem Grünland in auentypische Feuchtlebensräume, Auengewässer und Auenwald (s. a. Abb. 2). Obwohl der Habitatindex bei den meisten der betrachteten Auensegmente der rezenten Aue bereits im Status-Quo einen guten Zustand anzeigt, erfolgt nach der Maßnahmenumsetzung eine Verbesserung von Klasse 2 "hoch" auf Klasse 1 "sehr hoch". Hierfür ist die "gute" bis "sehr gute" Einschätzung der Teilindikatoren "Landnutzungsintensität" und der jetzt hohe "Anteil an Feuchtlebensräumen" maßgeblich.

4 Diskussion

Durch die Rückverlegung des Deiches bei Lenzen und die Etablierung auentypischer Lebensräume haben sich die vier Auenfunktionen Hochwasserretention, Nährstoff- und Kohlenstoffrückhalt sowie Habitatausstattung gegenüber dem Ausgangszustand erheblich verbessert. Dabei haben sich die Auenfunktionen z. T. um das Mehrfache ihres Ausgangswertes gesteigert. Diese auf bundesweiten Abschätzungen beruhenden Methoden lassen sich im konkreten Fall auch messtechnisch nachweisen, wie beispielsweise die Verbesserung des Hochwasserschutzes durch die Deichrückverlegung bei Lenzen (ALEXY und FAULHABER 2011) und der enorme Phosphorrückhalt in häufig überschwemmten Auenbereichen an der Elbe bei Schönberg-Deich zeigen (RUPP ET AL. 2000). Während die Hochwasser- und Nährstoffretention umge-

hend nach Fertigstellung einer Maßnahme wirksam wird, benötigen die Entwicklung von Auenlebensräumen und die Besiedlung durch auentypische Pflanzen und Tiere wesentlich mehr Zeit. Vorausgesetzt, die auentypischen Standortverhältnisse sind wieder hergestellt, benötigt beispielsweise ein Hartholz-Auenwald – bis er seine volle Habitatfunktion ausüben kann – eine Entwicklungszeit von über 100 bzw. 150 Jahren oder länger, Auengrünland einige Jahrzehnte, Pionierfluren als stark störungsbedingte Vegetation stellen sich bereits nach kurzer Zeit ein (KAULE 1991, BIERHALS ET AL. 2004, RIECKEN ET AL. 2006). Die Regenerationsdauer ist dabei zum einen abhängig vom Ausbreitungspotenzial der entsprechenden Arten, zum anderen hängt sie davon ab, wie eine Neubegründung angelegt bzw. die nachfolgende Pflege gesichert wird (z.B. HÖLZEL ET AL. 2006 oder WARTHEMANN ET AL. 2009 für die Renaturierung von Stromtalwiesen; GLAESER ET AL. 2009 für die Wiederbegründung von Auenwald). Im Rahmen der Berechnung des Habitatindex und des Kohlenstoffvorrates konnte der Faktor Zeit nicht berücksichtigt werden. Auch ist im Detail zukünftig noch zu klären, inwieweit höhere Nähr- und Schadstofffrachten Beeinträchtigungen von bestehenden Lebensraumfunktionen zur Folge haben können (Lamers ET AL. 2006, s.a. KRÜGER in diesem Band).

5 Fazit und Ausblick

Mit dieser Fallstudie zur Deichrückverlegung Lenzen hat sich gezeigt, dass mit dem verwendeten bundesweiten Ansatz zur Quantifizierung und Bewertung für alle betrachteten Auenfunktionen deutliche Verbesserungen sichtbar werden. Da in dem gewählten bundesweiten Ansatz die für Auen typische Formenvielfalt und die prozessbestimmenden Umweltfaktoren wie Geländetopographie und davon abhängenden Überschwemmungsdauern, Bodenformen, Landnutzungen oder Lebensräumen nur bedingt und vor allem nicht detailliert berücksichtigt werden konnten, sind die Ergebnisse nur auf der gewählten Skalenebene sachgerecht, stellen auf dieser Maßstabsebene aber eine fundierte Schätzung dar. Zukünftig wären zur Untersetzung der hier dargestellten Ergebnisse die Verwendung von höher aufgelösten Eingangsdaten und Prozessstudien mit vor Ort gemessenen Werten für die Deichrückverlegung sinnvoll, um die auf bundesweiter Ebene abgeleiteten Aussagen auf lokaler Ebene zu untersetzen, aber auch zu verifizieren.

Danksagung

Unser Dank geht an das Bundesamt für Naturschutz, das durch die Förderung des FuE-Vorhabens "Ökosystemfunktionen von Flussauen" die Realisierung dieses Beitrages ermöglichte. Unser besonderer Dank gilt insbesondere Herrn Dr. Thomas Ehlert und Herrn Bernd Neukirchen, die das zugrundeliegende Forschungsvorhaben mit hohem Engagement unterstützt und befördert haben. Ein weiterer Dank gilt Katharina Nabel (HS Anhalt) für die Bereitstellung aktueller Biotoptypendaten.

Literatur

- ALEXY, M. und P. FAULHABER (2011): Hydraulische Wirkung der Deichrückverlegung Lenzen an der Elbe. Wasserwirtschaft 12: S. 17-22.
- BIERHALS, E., v. DRACHENFELS, O. und M. RASPER (2004): Wertstufen und Regenerationsfähigkeit der Biotoptypen in Niedersachsen. Inform. Naturschutz Niedersachs. 24 (4): S. 231-240.
- Brunotte, E., Dister, E., Günther-Diringer, D., Koenzen, U. und D. Mehl (2009): Flussauen in Deutschland -Erfassung und Bewertung des Auenzustandes. Naturschutz und Biologische Vielfalt 87, 244 S.
- BMU und BfN Bundesministerium für Umwelt, Naturschutz Und Reaktorsicherheit & Bundesamt für Naturschutz (2009): Auenzustandsbericht. Flussauen in Deutschland. http://www.bfn.de/ 0324 auenzustandsbericht.html
- DAMM, C., DISTER, D., FAHLKE, N., FOLLNER, K., KÖNIG, F., KORTE, E., LEHMANN, B., MÜLLER, K., SCHULER, J., WEBER, A. und A. Wotke (2012): Auenschutz – Hochwasserschutz – Wasserkraftnutzung - Beispiele für eine ökologisch vorbildliche Praxis. Naturschutz und Biologische Vielfalt 112, 321 S.
- EISENMANN, V. (2002): Die Bedeutung der Böden für das Renaturierungspotential von Rückdeichungsgebieten an der Mittleren Elbe. Hamburger Bodenkundliche Arbeiten 51. Dissertation Universität Hamburg, 140 S. und Anhang.
- GLAESER, J., BLEßner, K., Brosinsky, A., Ceko, R., Guttmann, S., Kreibich, M., Osterloh, S., Passing, A., Schwäbe, S., TIMPE, C. und B. FELINKS (2009): Erfolgskontrolle von Hartholz-Auenwald-Aufforstungen in der Kliekener Aue. Naturschutz im Land Sachsen-Anhalt 46, Sonderheft 2009/1: S: 41-48.
- HELLWIG, M. (2000): Auenregeneration an der Elbe Untersuchungen zur Syndynamik und Bioindikation von Pflanzengesellschaften an der Unteren Mittelelbe bei Lenzen. Dissertation Universität Hannover, 296 S.
- HANSJÜRGENS, B. (2011): Bewertung von Wasser in Landschaften Konzepte, Ansätze und Empfehlungen. acatech Materialien Nr. 8, München, 27 S.
- HÖLZEL, N., BISSELS, S., DONATH, T.W., HANDKE, K., HARNISCH, M. und A. OTTE (2006): Renaturierung von Stromtalwiesen am hessischen Oberrhein - Ergebnisse eines E+E-Vorhabens des Bundesamtes für Naturschutz. Naturschutz und Biologische Vielfalt 31, 263 S.
- KAULE, G. (1991): Arten- und Biotopschutz. 2. Auflage, Stuttgart, 519 S.
- LAMERS, L.P.M., LOEB, R., ANTHEUNISSE, A.M., MILETTO, M., LUCASSEN, E.C.H.E.T., BOXMAN, A.W., SMOLDERS, A.J.P. und J.G.M. ROELOFS (2006): Biogeochemical constraints on the ecological rehabilitation of wetland vegetation in river floodplains. Hydrobiologia 565: S. 165-186.
- MEHL, D., STEINHÄUSER, A., KASPERIDUS H.D. und M. SCHOLZ (2012): Hochwasserretention. In: SCHOLZ et al. (2012a): Ökosystemfunktionen von Flussauen. Naturschutz und Biologische Vielfalt 124: S. 34-47.
- NABEL, K., DAMM, C. und B. FELINKS (2012): Vegetationsentwicklung in der Lenzener Elbtalaue nach Nutzungsaufgabe und Auenwaldinitialpflanzungen. Ein Vergleich zwischen 1999 und 2009. Naturschutz und Landschaftsplanung, eingereicht.
- PURPS, J., DAMM, C. und F. NEUSCHULZ (2004): Naturschutzgroßprojekt Lenzener Elbtalaue, Brandenburg Auenregeneration durch Deichrückverlegung an der Elbe. Natur und Landschaft 79 (9): S. 408-415.
- RIECKEN, U., FINCK, P., RATHS, U., SCHRÖDER, E. und A. SSYMANK (2006): Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Naturschutz und Biologische Vielfalt 34,
- RUPP, H., KRÜGER, F., BÜTTNER, O., KUNERT, M., MEISSNER, R., MUHS, K. und B. WITTER (2000): Wirkung von Hochwasserereignissen auf die Schadstoffbelastung von Auen und kulturwirtschaftlich genutzten Böden im Überschwemmungsbereich von Oka und Elbe. BMBF-Abschlussbericht, FKZ: 02 WT9617/0, 209 S.

- SCHOLZ, M., MEHL, D., SCHULZ-ZUNKEL, C., KASPERIDUS, H.D., BORN, W. und K. HENLE (2012a): Ökosystemfunktionen von Flussauen Analyse und Bewertung von Hochwasserretention, Nährstoffrückhalt, Kohlenstoffvorrat, Treibhausgasemissionen und Habitatfunktion. Naturschutz und Biologische Vielfalt 124, 257 S.
- SCHOLZ, M. CIERJACKS, A. KASPERIDUS, H.D., SCHULZ-ZUNKEL, C. RUPP, H., STEINMANN und F. KRÜGER (2012b):
 Kohlenstoffvorrat in Flussauen. In: SCHOLZ, ET AL. (2012a): Ökosystemfunktionen von Flussauen.
 Naturschutz und Biologische Vielfalt 124: S. 73-85.
- SCHOLZ, M., KASPERIDUS, H.D., ILG, C. und K. HENLE (2012c): Habitatfunktion. In: SCHOLZ, et al. (2012a):
 Ökosystemfunktionen von Flussauen. Naturschutz und Biologische Vielfalt 124: S. 107-152.
- SCHOLZ, M., KASPERIDUS, H.D., MEHL, D. und C. SCHULZ-ZUNKEL (2012d): Wirkung von Deichrückverlegungen auf die Auenfunktionen. In: SCHOLZ et al. (2012a): Ökosystemfunktionen von Flussauen.

 Naturschutz und Biologische Vielfalt 124: S. 169-183.
- SCHULZ-ZUNKEL, C., SCHOLZ, M., KASPERIDUS, H.D., KRÜGER, F., NATHO. S. und M. VENOHR (2012): Nährstoffrückhalt. In: SCHOLZ et al. (2012a): Ökosystemfunktionen von Flussauen. Naturschutz und Biologische Vielfalt 124: S. 48-72.
- SCHWARTZ, R. (2001): Die Böden der Elbaue bei Lenzen und ihre möglichen Veränderungen nach Rückdeichung. Hamburger Bodenkundliche Arbeiten 48. Dissertation, Universität Hamburg, 391 S. und Anhang.
- TEEB (2010): Die Ökonomie von Ökosystemen und Biodiversität: Die ökonomische Bedeutung der Natur in Entscheidungsprozesse integrieren. (TEEB 2010) The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature) Ansatz, Schlussfolgerungen und Empfehlungen von TEEB eine Synthese. http://www.ufz.de/index.php?de=20872
- Warthemann, G., Bischoff, A. und N. Winter (2009): Renaturierung von Brenndolden-Auenwiesen durch Mahdgutübertragung in der Elbeaue bei Dessau. Naturschutz im Land Sachsen-Anhalt. 46, Sonderheft 2009/1: S. 49-56.
- ¹ Genauere Angaben zur Flächenausstattung der ehemaligen rezenten Aue als auch des Deichrückverlegungsgebietes sind in Hellwig (2000) dokumentiert.
- Als Zielgröße wird eine Initialpflanzung von 160 ha Auenwald mit weiteren 130 ha Auenwaldsukzessionsbereichen angegeben (DAMM ET AL. 2012). Im Rahmen dieser Betrachtung ist der Waldanteil wesentlich geringer, da viele gepflanzte Jungbestände auf Grund der aktuellen Vegetationsstruktur noch als Feuchtlebensraum und nicht als Waldbiotoptyp erfasst wurden (K. NABEL mdl.).
- ³ Hier wurde auf die bei SCHOLZ ET AL. (2012b) ermittelte Faustzahl für den oberirdischen Kohlenstoffvorrat von Auenwald der rezenten Aue von 222 t C ha⁻¹ zurückgegriffen. Laufende Diplomarbeiten an der Universität Leipzig und TU Berlin konnten diese Werte im Wesentlichen auch für Altauenbereiche bestätigen.

Autorenverzeichnis

Alexy, Matthias

Bundesanstalt für Wasserbau Kußmaulstraße 17, 76187 Karlsruhe

Behnke, Jana

Universität Hamburg Biozentrum Grindel und zoologisches Museum Martin-Luther-King Platz 3, 20146 Hamburg

Damm, Dr. Christian

Karlsruher Institut für Technologie (KIT) Bereich WWF-Auen-Institut Josefstr.1, 76437 Rastatt

Dengler, Dr. Jürgen

Angewandte Pflanzenökologie, Universität Hamburg Ohnhorststraße 18, 22609 Hamburg

Faulhaber, Petra

Bundesanstalt für Wasserbau Kußmaulstraße 17, 76187 Karlsruhe

Feigs, Jannis

Biozentrum Grindel und zoologisches Museum Martin-Luther-King Platz 3, 20146 Hamburg

Felinks, Dr. Birgit

Europäisches Zentrum für Auenökologie des BUND Trägerverbund Burg Lenzen e.V. Burgstr. 3, 19309 Lenzen

Fladung, Erik

Institut für Binnenfischerei e.V. Potsdam-Sacrow Im Königswald 2, 14469 Potsdam

Glos, Dr. Julian

Universität Hamburg Biozentrum Grindel und zoologisches Museum Martin-Luther-King Platz 3, 20146 Hamburg

Grunwald, Greta

Universität Hamburg Biozentrum Grindel und zoologisches Museum Martin-Luther-King Platz 3, 20146 Hamburg

Heinicke, Thomas

Biosphärenreservat Flusslandschaft Elbe-Brandenburg Arten- und Biotopschutz Neuhausstraße 9, 19322 Rühstädt

Horchler, Dr. Peter

Bundesanstalt für Gewässerkunde Referat U2: Ökologische Wirkungszusammenhänge Am Mainzer Tor 1, 56068 Koblenz

Jensen, Dr. Kai

Universität Hamburg , Angewandte Pflanzenökologie Ohnhorststraße 18, 22609 Hamburg

Kasperidus, Hans Dieter

Department Naturschutzforschung

Helmholtz-Zentrum für Umweltforschung – UFZ

Permoserstr. 15, 04318 Leipzig

Krüger, Frank

ELANA

Zehrener Dorfstr. 22, 39619 Arendsee

Kühne, Daniela

Universität Hamburg

Biozentrum Grindel und zoologisches Museum Martin-Luther-King Platz 3, 20146 Hamburg

Lenzewski, Nikola

Universität Hamburg, Angewandte Pflanzenökologie Ohnhorststraße 18, 22609 Hamburg

Lewin, Dr. Wolf-Christian

Institut für Binnenfischerei e.V. Potsdam-Sacrow (IfB-Potsdam) Im Königswald 2, 14469 Potsdam

Mehl, Dietmar

biota

Institut für ökologische Forschung und Planung GmbH Nebelring 15, 18246 Bützow

Mosner, Dr. Eva

Bundesanstalt für Gewässerkunde

Referat U2: Ökologische Wirkungszusammenhänge

Am Mainzer Tor 1, 56068 Koblenz

Montenearo, Dr. Hector

Bundesanstalt für Wasserbau Karlsruhe

Abteilung Geotechnik

Kußmaulstr. 17, 76187 Karlsruhe

Nabel, Katharina

Hochschule Anhalt.

Fachbereich 1

Strenzfelder Allee 28, 06406 Bernburg

Purps, Jochen

Büro für regionale Entwicklung und ökologische Planungen Karl-Liebknecht-Str. 11, 19366 Bad Wilsnack

Rottenau, Anne

Universität Hamburg

Biozentrum Grindel und zoologisches Museum

Martin-Luther-King Platz 3, 20146 Hamburg

Ryz, Sylvia

Universität Hamburg

Biozentrum Grindel und zoologisches Museum

Martin-Luther-King Platz 3, 20146 Hamburg

Scholz, Mathias

Department Naturschutzforschung

Helmholtz-Zentrum für Umweltforschung – UFZ

Permoserstr. 15, 04318 Leipzig

Timpe, Christian

Hochschule Anhalt

Fachbereich 1

Strenzfelder Allee 28, 06406 Bernburg

Schulze-Zunkel, Christiane

Department Naturschutzforschung

Helmholtz-Zentrum für Umweltforschung – UFZ

Permoserstr. 15, 04318 Leipzig

Vorstellung und Diskussion der wissenschaftlichen Ergebnisse auf einer Tagung im November 2011 im Biosphärenreservat Flusslandschaft Elbe-Brandenburg (Foto: Archiv Biosphärenreservat 11/2012).

Herausgeber: Ministerium für Umwelt, Gesundheit und

Verbraucherschutz des Landes Brandenburg

Redaktion: Anneliese Struck, Heike Garbe

Biosphärenreservat Flusslandschaft Elbe-Brandenburg

Dr. Birgit Felinks

Europäisches Zentrum für Auenökologie des BUND Neuhausstraße 9, 19322 Rühstädt, Tel. 038791-9800

Satz: printlayout & webdesign, Potsdam

Druck: Brandenburgische Universitätsdruckerei und Verlags-

gesellschaft Potsdam mbH

Titelfoto: Katharina Nabel 04/2010

Die Beiträge geben die Auffassung und Meinung der Autoren wieder und müssen nicht mit der Auffassung des Herausgebers übereinstimmen.

Schutzgebühr: 9€